The flight verification of an integrated propulsion system powered by PEMFCs with direct airflow intake design

IF 10.1 1区 工程技术 Q1 ENERGY & FUELS
{"title":"The flight verification of an integrated propulsion system powered by PEMFCs with direct airflow intake design","authors":"","doi":"10.1016/j.apenergy.2024.124432","DOIUrl":null,"url":null,"abstract":"<div><p>The propulsion and power systems are critical to the performance of unmanned aerial vehicles (UAVs). The rapid development of electrified propulsion systems powered by proton exchange membrane fuel cells (PEMFCs) has driven technological innovation of propulsion and power systems for UAVs. In this work, a 1.5 kW PEMFC integrated propulsion system with direct airflow intake design (Beihang Hydrogen-1) is developed and verified by flight test on a UAV with a wingspan of 3.6 m. The propulsion system can directly use the airflow behind the propeller to feed the PEMFC cathode for cooling and reaction and the power generated by the PEMFC is used to drive the propeller. A DC-DC module and a lithium battery pack are also added to the propulsion system to stabilize the output voltage and increase the instantaneous power for takeoff, transition, and landing stages. The “dynamic distribution” energy management strategy for the propulsion system is proposed to increase the system dynamic response ability. The detailed data of the PEMFC integrated propulsion system during the flight are measured and analyzed. The flight test continued for 18 min, with an average cruising altitude and an average cruising speed of 101 m above sea level and 23 m/s, respectively. During the cruise stage, the average PEMFC power is 1688 W, with an average single-cell voltage of 0.65 V. The average charging power of PEMFC for the lithium battery is 41 W. The successful flight test verifies the feasibility of the design of the PEMFC integrated propulsion system, provides valuable data for the following optimal design and flight test of the PEMFC integrated propulsion systems, and opens up a new direction for the development and application of PEMFC-powered electrified propulsion systems.</p></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":null,"pages":null},"PeriodicalIF":10.1000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261924018154","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The propulsion and power systems are critical to the performance of unmanned aerial vehicles (UAVs). The rapid development of electrified propulsion systems powered by proton exchange membrane fuel cells (PEMFCs) has driven technological innovation of propulsion and power systems for UAVs. In this work, a 1.5 kW PEMFC integrated propulsion system with direct airflow intake design (Beihang Hydrogen-1) is developed and verified by flight test on a UAV with a wingspan of 3.6 m. The propulsion system can directly use the airflow behind the propeller to feed the PEMFC cathode for cooling and reaction and the power generated by the PEMFC is used to drive the propeller. A DC-DC module and a lithium battery pack are also added to the propulsion system to stabilize the output voltage and increase the instantaneous power for takeoff, transition, and landing stages. The “dynamic distribution” energy management strategy for the propulsion system is proposed to increase the system dynamic response ability. The detailed data of the PEMFC integrated propulsion system during the flight are measured and analyzed. The flight test continued for 18 min, with an average cruising altitude and an average cruising speed of 101 m above sea level and 23 m/s, respectively. During the cruise stage, the average PEMFC power is 1688 W, with an average single-cell voltage of 0.65 V. The average charging power of PEMFC for the lithium battery is 41 W. The successful flight test verifies the feasibility of the design of the PEMFC integrated propulsion system, provides valuable data for the following optimal design and flight test of the PEMFC integrated propulsion systems, and opens up a new direction for the development and application of PEMFC-powered electrified propulsion systems.

以直接气流进气设计的 PEMFC 为动力的集成推进系统的飞行验证
推进和动力系统对无人飞行器(UAV)的性能至关重要。以质子交换膜燃料电池(PEMFC)为动力的电气化推进系统的快速发展推动了无人机推进和动力系统的技术创新。该推进系统可直接利用螺旋桨后的气流为质子交换膜燃料电池阴极提供冷却和反应所需的能量,并利用质子交换膜燃料电池产生的电能驱动螺旋桨。推进系统还增加了一个 DC-DC 模块和一个锂电池组,以稳定输出电压,提高起飞、过渡和着陆阶段的瞬时功率。为提高系统的动态响应能力,提出了推进系统的 "动态分配 "能量管理策略。对 PEMFC 集成推进系统在飞行过程中的详细数据进行了测量和分析。飞行试验持续了 18 分钟,平均巡航高度和平均巡航速度分别为海拔 101 米和 23 米/秒。此次飞行试验的成功验证了PEMFC集成推进系统设计的可行性,为后续PEMFC集成推进系统的优化设计和飞行试验提供了宝贵的数据,为PEMFC供电的电气化推进系统的开发和应用开辟了新的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Energy
Applied Energy 工程技术-工程:化工
CiteScore
21.20
自引率
10.70%
发文量
1830
审稿时长
41 days
期刊介绍: Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信