To boost waste heat harvesting and power generation through a portable heat pipe battery during high efficient electronics cooling

IF 10.1 1区 工程技术 Q1 ENERGY & FUELS
{"title":"To boost waste heat harvesting and power generation through a portable heat pipe battery during high efficient electronics cooling","authors":"","doi":"10.1016/j.apenergy.2024.124397","DOIUrl":null,"url":null,"abstract":"<div><p>The power consumption of data centers (DCs) has increased dramatically due to the rising demand for computing power. However, a huge amount of low-grade electronic waste heat generated by these DCs is dissipated directly into the environment with the assistance of the energy-driven cooling system, thereby doubling the production of energy waste. Thus, innovative cooling and low-grade waste heat recovery technologies in DCs are urgently needed. In this study, we proposed a loop heat pipe battery (LHPB) with dual gradient wicks relay. According to the gradient wick relay strategy, the heat leakage at the evaporator inlet was alleviated, allowing the vapor inside to remove heat more rapidly and impact the micro-generator installed at the condenser inlet. Furthermore, two kinds of high-efficiency microgenerators were designed. The experimental results showed that under forced convection cooling of a 12 V fan, the cooling capacity of the LHPB with wicks relay was 288 W with a junction temperature maintained below 85 °C. The minimum total thermal resistance and nominal power usage effectiveness were 0.20 °C/W and 1.0015, respectively. The maximum rotor speed was 10,716 r/min and the maximum output power of the two generators was 195 and 280 mW. The LHPB with wicks relay demonstrated an innovative solution to promote low-grade waste heat harvesting during efficient electronics cooling and the potential to be a promising energy-saving device in future DCs. The proposed optimization strategy provides guidance for the evolution of the LHPB with wicks relay.</p></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":null,"pages":null},"PeriodicalIF":10.1000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030626192401780X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The power consumption of data centers (DCs) has increased dramatically due to the rising demand for computing power. However, a huge amount of low-grade electronic waste heat generated by these DCs is dissipated directly into the environment with the assistance of the energy-driven cooling system, thereby doubling the production of energy waste. Thus, innovative cooling and low-grade waste heat recovery technologies in DCs are urgently needed. In this study, we proposed a loop heat pipe battery (LHPB) with dual gradient wicks relay. According to the gradient wick relay strategy, the heat leakage at the evaporator inlet was alleviated, allowing the vapor inside to remove heat more rapidly and impact the micro-generator installed at the condenser inlet. Furthermore, two kinds of high-efficiency microgenerators were designed. The experimental results showed that under forced convection cooling of a 12 V fan, the cooling capacity of the LHPB with wicks relay was 288 W with a junction temperature maintained below 85 °C. The minimum total thermal resistance and nominal power usage effectiveness were 0.20 °C/W and 1.0015, respectively. The maximum rotor speed was 10,716 r/min and the maximum output power of the two generators was 195 and 280 mW. The LHPB with wicks relay demonstrated an innovative solution to promote low-grade waste heat harvesting during efficient electronics cooling and the potential to be a promising energy-saving device in future DCs. The proposed optimization strategy provides guidance for the evolution of the LHPB with wicks relay.

在高效电子设备冷却过程中,通过便携式热管电池促进废热收集和发电
由于对计算能力的需求不断增长,数据中心(DC)的耗电量急剧增加。然而,这些数据中心产生的大量低品位电子废热在能源驱动的冷却系统的帮助下直接散失到环境中,从而加倍产生了能源废物。因此,迫切需要在直流电中采用创新的冷却和低品位余热回收技术。在这项研究中,我们提出了一种具有双梯度灯芯继电器的环形热管电池(LHPB)。根据梯度灯芯继电器策略,蒸发器入口处的热量泄漏得到了缓解,从而使内部的蒸汽能够更快地带走热量,并对安装在冷凝器入口处的微型发电机产生影响。此外,还设计了两种高效微型发电机。实验结果表明,在 12 V 风扇的强制对流冷却条件下,带灯芯继电器的 LHPB 的冷却能力为 288 W,结温保持在 85 °C 以下。最小总热阻和额定功率使用效率分别为 0.20 °C/W 和 1.0015。转子最高转速为 10,716 r/min,两台发电机的最大输出功率分别为 195 mW 和 280 mW。带灯芯继电器的 LHPB 展示了在高效电子冷却过程中促进低品位余热收集的创新解决方案,并有望成为未来直流电中的节能装置。建议的优化策略为带灯芯继电器的 LHPB 的发展提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Energy
Applied Energy 工程技术-工程:化工
CiteScore
21.20
自引率
10.70%
发文量
1830
审稿时长
41 days
期刊介绍: Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信