Rida Ait El Manssour , Anna-Laura Sattelberger , Bertrand Teguia Tabuguia
{"title":"D-algebraic functions","authors":"Rida Ait El Manssour , Anna-Laura Sattelberger , Bertrand Teguia Tabuguia","doi":"10.1016/j.jsc.2024.102377","DOIUrl":null,"url":null,"abstract":"<div><p>Differentially-algebraic (D-algebraic) functions are solutions of polynomial equations in the function, its derivatives, and the independent variables. We revisit closure properties of these functions by providing constructive proofs. We present algorithms to compute algebraic differential equations for compositions and arithmetic manipulations of univariate D-algebraic functions and derive bounds for the order of the resulting differential equations. We apply our methods to examples in the sciences.</p></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717124000816","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Differentially-algebraic (D-algebraic) functions are solutions of polynomial equations in the function, its derivatives, and the independent variables. We revisit closure properties of these functions by providing constructive proofs. We present algorithms to compute algebraic differential equations for compositions and arithmetic manipulations of univariate D-algebraic functions and derive bounds for the order of the resulting differential equations. We apply our methods to examples in the sciences.
期刊介绍:
An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects.
It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.