G. Bera , P. Botella , J. Pellicer-Porres , D. Diaz-Anichtchenko , D. Errandonea , O. Gomis , R. Oliva , J. Ibañez , F. Alabarse , S. Valencia , F. Rey , A. Otero-de-la-Roza , D. Santamaria-Perez
{"title":"Structural stability and adsorption behaviour of CO2-loaded pure silica CHA and ITW zeolites upon compression","authors":"G. Bera , P. Botella , J. Pellicer-Porres , D. Diaz-Anichtchenko , D. Errandonea , O. Gomis , R. Oliva , J. Ibañez , F. Alabarse , S. Valencia , F. Rey , A. Otero-de-la-Roza , D. Santamaria-Perez","doi":"10.1016/j.micromeso.2024.113317","DOIUrl":null,"url":null,"abstract":"<div><p>The present study investigates the structural stability and adsorption behavior of ultrahigh CO<sub>2</sub>-loaded pure-silica zeolites chabazite (CHA) and ITQ-12 (ITW) under high pressure conditions. To analyze these properties, we have utilized <em>in situ</em> synchrotron-based X-ray powder diffraction techniques. Lattice indexation provides information of the filling process and, through Rietveld refinements and Fourier recycling methods, we have been able to (i) determine the location and amount of guest carbon dioxide molecules within the cavities of pure-SiO<sub>2</sub> CHA zeolite and (ii) tentatively determine that within the channels of the porous pure-SiO<sub>2</sub> ITW framework. The filling of the zeolite pores with CO<sub>2</sub> molecules was found to have a positive impact on the structural stability of both CHA and ITW under compression, which do not undergo pressure-induced amorphization up to 12.2 GPa and 15.9 GPa, respectively. Interestingly, low compressibility takes place in CHA zeolite below 4 GPa during CO<sub>2</sub> loading and a second-order phase transition occurs in CO<sub>2</sub>-filled ITW zeolite at 2.1 GPa. These results highlight the influence of CO<sub>2</sub> adsorption on the compressibility behavior of these zeolites. Overall, our study provides detailed insights into the structural behavior of CO<sub>2</sub>-loaded CHA and ITW under high pressure and allows comparison with other pure silica zeolites described in the literature.</p></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"380 ","pages":"Article 113317"},"PeriodicalIF":4.8000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1387181124003391/pdfft?md5=a8adcb2c0ce139587c1289f9a5f532df&pid=1-s2.0-S1387181124003391-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microporous and Mesoporous Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387181124003391","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The present study investigates the structural stability and adsorption behavior of ultrahigh CO2-loaded pure-silica zeolites chabazite (CHA) and ITQ-12 (ITW) under high pressure conditions. To analyze these properties, we have utilized in situ synchrotron-based X-ray powder diffraction techniques. Lattice indexation provides information of the filling process and, through Rietveld refinements and Fourier recycling methods, we have been able to (i) determine the location and amount of guest carbon dioxide molecules within the cavities of pure-SiO2 CHA zeolite and (ii) tentatively determine that within the channels of the porous pure-SiO2 ITW framework. The filling of the zeolite pores with CO2 molecules was found to have a positive impact on the structural stability of both CHA and ITW under compression, which do not undergo pressure-induced amorphization up to 12.2 GPa and 15.9 GPa, respectively. Interestingly, low compressibility takes place in CHA zeolite below 4 GPa during CO2 loading and a second-order phase transition occurs in CO2-filled ITW zeolite at 2.1 GPa. These results highlight the influence of CO2 adsorption on the compressibility behavior of these zeolites. Overall, our study provides detailed insights into the structural behavior of CO2-loaded CHA and ITW under high pressure and allows comparison with other pure silica zeolites described in the literature.
期刊介绍:
Microporous and Mesoporous Materials covers novel and significant aspects of porous solids classified as either microporous (pore size up to 2 nm) or mesoporous (pore size 2 to 50 nm). The porosity should have a specific impact on the material properties or application. Typical examples are zeolites and zeolite-like materials, pillared materials, clathrasils and clathrates, carbon molecular sieves, ordered mesoporous materials, organic/inorganic porous hybrid materials, or porous metal oxides. Both natural and synthetic porous materials are within the scope of the journal.
Topics which are particularly of interest include:
All aspects of natural microporous and mesoporous solids
The synthesis of crystalline or amorphous porous materials
The physico-chemical characterization of microporous and mesoporous solids, especially spectroscopic and microscopic
The modification of microporous and mesoporous solids, for example by ion exchange or solid-state reactions
All topics related to diffusion of mobile species in the pores of microporous and mesoporous materials
Adsorption (and other separation techniques) using microporous or mesoporous adsorbents
Catalysis by microporous and mesoporous materials
Host/guest interactions
Theoretical chemistry and modelling of host/guest interactions
All topics related to the application of microporous and mesoporous materials in industrial catalysis, separation technology, environmental protection, electrochemistry, membranes, sensors, optical devices, etc.