Representations of the rational Cherednik algebra Ht,c(S3,h) in positive characteristic

IF 0.8 2区 数学 Q2 MATHEMATICS
Martina Balagović, Jordan Barnes
{"title":"Representations of the rational Cherednik algebra Ht,c(S3,h) in positive characteristic","authors":"Martina Balagović,&nbsp;Jordan Barnes","doi":"10.1016/j.jalgebra.2024.08.014","DOIUrl":null,"url":null,"abstract":"<div><p>We study the rational Cherednik algebra <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>t</mi><mo>,</mo><mi>c</mi></mrow></msub><mo>(</mo><msub><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo><mi>h</mi><mo>)</mo></math></span> of type <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> in positive characteristic <em>p</em>, and its irreducible category <span><math><mi>O</mi></math></span> representations <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>t</mi><mo>,</mo><mi>c</mi></mrow></msub><mo>(</mo><mi>τ</mi><mo>)</mo></math></span>. For every possible value of <span><math><mi>p</mi><mo>,</mo><mi>t</mi><mo>,</mo><mi>c</mi></math></span>, and <em>τ</em> we calculate the Hilbert polynomial and the character of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>t</mi><mo>,</mo><mi>c</mi></mrow></msub><mo>(</mo><mi>τ</mi><mo>)</mo></math></span>, and give explicit generators of the maximal proper graded submodule of the Verma module.</p></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021869324004691/pdfft?md5=05b5b7def2f1dc1cc017665e423dba06&pid=1-s2.0-S0021869324004691-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324004691","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the rational Cherednik algebra Ht,c(S3,h) of type A2 in positive characteristic p, and its irreducible category O representations Lt,c(τ). For every possible value of p,t,c, and τ we calculate the Hilbert polynomial and the character of Lt,c(τ), and give explicit generators of the maximal proper graded submodule of the Verma module.

有理切列尼克代数 Ht,c(S3,h)在正特征中的表示
我们研究正特征 p 的 A2 型有理切列尼克代数 Ht,c(S3,h)及其不可还原的 O 类表示 Lt,c(τ)。对于 p,t,c 和 τ 的每一个可能值,我们都计算了希尔伯特多项式和 Lt,c(τ)的性质,并给出了维尔马模块的最大适当分级子模块的明确生成器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信