The action of GT-shadows on child's drawings

IF 0.8 2区 数学 Q2 MATHEMATICS
Vasily A. Dolgushev
{"title":"The action of GT-shadows on child's drawings","authors":"Vasily A. Dolgushev","doi":"10.1016/j.jalgebra.2024.08.010","DOIUrl":null,"url":null,"abstract":"<div><p><span><math><mi>GT</mi></math></span>-shadows <span><span>[8]</span></span> are tantalizing objects that can be thought of as approximations of elements of the mysterious Grothendieck-Teichmueller group <span><math><mover><mrow><mi>GT</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span> introduced by V. Drinfeld in 1990. <span><math><mi>GT</mi></math></span>-shadows form a groupoid <span><math><mi>GTSh</mi></math></span> whose objects are finite index subgroups of the pure braid group <span><math><msub><mrow><mi>PB</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>, that are normal in <span><math><msub><mrow><mi>B</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>. The goal of this paper is to describe the action of <span><math><mi>GT</mi></math></span>-shadows on Grothendieck's child's drawings and show that this action agrees with that of <span><math><mover><mrow><mi>GT</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span>. We discuss the hierarchy of orbits of child's drawings with respect to the actions of <span><math><mi>GTSh</mi></math></span>, <span><math><mover><mrow><mi>GT</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span>, and the absolute Galois group <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>Q</mi></mrow></msub></math></span> of rationals. We prove that the monodromy group and the passport of a child's drawing are invariant with respect to the action of the subgroupoid <span><math><msup><mrow><mi>GTSh</mi></mrow><mrow><mo>♡</mo></mrow></msup></math></span> of charming <span><math><mi>GT</mi></math></span>-shadows. We use the action of <span><math><mi>GT</mi></math></span>-shadows on child's drawings to prove that every Abelian child's drawing admits a Belyi pair defined over <span><math><mi>Q</mi></math></span>. Finally, we describe selected examples of non-Abelian child's drawings.</p></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324004678","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

GT-shadows [8] are tantalizing objects that can be thought of as approximations of elements of the mysterious Grothendieck-Teichmueller group GTˆ introduced by V. Drinfeld in 1990. GT-shadows form a groupoid GTSh whose objects are finite index subgroups of the pure braid group PB4, that are normal in B4. The goal of this paper is to describe the action of GT-shadows on Grothendieck's child's drawings and show that this action agrees with that of GTˆ. We discuss the hierarchy of orbits of child's drawings with respect to the actions of GTSh, GTˆ, and the absolute Galois group GQ of rationals. We prove that the monodromy group and the passport of a child's drawing are invariant with respect to the action of the subgroupoid GTSh of charming GT-shadows. We use the action of GT-shadows on child's drawings to prove that every Abelian child's drawing admits a Belyi pair defined over Q. Finally, we describe selected examples of non-Abelian child's drawings.

GT 阴影对儿童绘画的影响
GT阴影[8]是一个诱人的对象,可以看作是V. Drinfeld于1990年提出的神秘格罗内迪克-泰赫穆勒群GTˆ的元素近似。GT 阴影构成了一个类群 GTSh,其对象是纯辫状花序群 PB4 的有限索引子群,这些子群在 B4 中是正常的。本文的目的是描述 GT 阴影对格罗内狄克子图画的作用,并证明这一作用与 GTˆ 的作用一致。我们讨论了与 GTSh、GTˆ 和有理数的绝对伽罗瓦群 GQ 的作用相关的子图纸轨道的层次结构。我们证明了儿童图画的单色群和护照相对于迷人的 GT 阴影的子群 GTSh♡ 的作用是不变的。最后,我们描述了一些非阿贝尔儿童画的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信