Cu-doped ring-shaped Fe2O3 as high-capacity and high-rate anode for lithium-ion batteries

IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL
{"title":"Cu-doped ring-shaped Fe2O3 as high-capacity and high-rate anode for lithium-ion batteries","authors":"","doi":"10.1016/j.ssi.2024.116688","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, ring-shaped Fe<sub>2</sub>O<sub>3</sub> anode materials were modified by using ion doping. Ring-shaped Fe<sub>2</sub>O<sub>3</sub> anode materials doped with different concentrations of Cu were prepared by hydrothermal method. The overall morphology of ring-shaped Fe<sub>2</sub>O<sub>3</sub> did not change after Cu doped while the lattice deformation led to the generation of more oxygen vacancies and thus enhanced the lithium storage capacity. The Cu doped ring-shaped Fe<sub>2</sub>O<sub>3</sub> showed excellent cycling and multiplicity performance, and the Fe<sub>2</sub>O<sub>3</sub> material with 3 % Cu doped had the best electrochemical performance, with a specific capacity of 862.6 mAh g<sup>−1</sup> after 100 cycles at a current density of 0.1C and a better multiplicity performance. The experimental results indicated that the electrochemical performance of Fe<sub>2</sub>O<sub>3</sub> anode materials can be effectively improved by ion doping.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273824002364","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, ring-shaped Fe2O3 anode materials were modified by using ion doping. Ring-shaped Fe2O3 anode materials doped with different concentrations of Cu were prepared by hydrothermal method. The overall morphology of ring-shaped Fe2O3 did not change after Cu doped while the lattice deformation led to the generation of more oxygen vacancies and thus enhanced the lithium storage capacity. The Cu doped ring-shaped Fe2O3 showed excellent cycling and multiplicity performance, and the Fe2O3 material with 3 % Cu doped had the best electrochemical performance, with a specific capacity of 862.6 mAh g−1 after 100 cycles at a current density of 0.1C and a better multiplicity performance. The experimental results indicated that the electrochemical performance of Fe2O3 anode materials can be effectively improved by ion doping.

掺铜环形 Fe2O3 作为锂离子电池的高容量和高倍率负极
本文利用离子掺杂对环形 Fe2O3 阳极材料进行了改性。采用水热法制备了掺杂不同浓度 Cu 的环形 Fe2O3 阳极材料。掺杂 Cu 后,环形 Fe2O3 的整体形貌没有发生变化,而晶格形变导致了更多氧空位的产生,从而提高了锂存储容量。掺杂 Cu 的环形 Fe2O3 表现出优异的循环和倍率性能,其中掺杂 3% Cu 的 Fe2O3 材料电化学性能最好,在 0.1C 电流密度下循环 100 次后比容量为 862.6 mAh g-1,倍率性能也较好。实验结果表明,离子掺杂可有效改善 Fe2O3 阳极材料的电化学性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solid State Ionics
Solid State Ionics 物理-物理:凝聚态物理
CiteScore
6.10
自引率
3.10%
发文量
152
审稿时长
58 days
期刊介绍: This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on: (i) physics and chemistry of defects in solids; (ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering; (iii) ion transport measurements, mechanisms and theory; (iv) solid state electrochemistry; (v) ionically-electronically mixed conducting solids. Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties. Review papers and relevant symposium proceedings are welcome.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信