K.A. Titus , David Dempsey , Rebecca A.M. Peer , Rosalind Archer
{"title":"Techno-economic analysis of geothermal combined with direct and biomass-based carbon dioxide removal for high-temperature hydrothermal systems","authors":"K.A. Titus , David Dempsey , Rebecca A.M. Peer , Rosalind Archer","doi":"10.1016/j.geothermics.2024.103159","DOIUrl":null,"url":null,"abstract":"<div><p>Limiting global temperature rise to between 1.5 and 2 °C will likely require widespread deployment of carbon dioxide removal (CDR) to offset sectors with hard-to-abate emissions. As financial resources for decarbonization are finite, strategic deployment of CDR technologies is essential for maximizing atmospheric CO<sub>2</sub> reductions. Carbon capture and sequestration (CCS), using either direct air capture (DACCS) or bioenergy (BECCS) technologies has a particular synergy with geothermal electricity generation. This is because expensive geothermal infrastructure can be leveraged to transport dissolved CO<sub>2</sub> for storage in subsurface reservoirs.</p><p>Here, we present a techno-economic comparison of renewable electricity generation coupled with either BECCS or DACCS at high-temperature, low-gas hydrothermal systems. We use a systems model that quantifies energy, carbon and financial flows through a generic hybrid power plant. At a CO<sub>2</sub> market price of $100/tonne, the geothermal-BECCS system has a lower median cost of electricity generation ($88/MWh) than geothermal-DACCS ($181/MWh) and conventional geothermal ($89/MWh).</p><p>Geothermal-BECCS also had the lowest costs of overall emissions abatement, $122/tCO<sub>2</sub>, accounting for carbon removal and assuming displacement of fossil-fuel generation. Abatement costs are even lower, $45/tCO<sub>2</sub>, for BECCS retrofit of existing geothermal plants, owing to discounted costs of pre-existing injection wells, steam fields, and plant equipment.</p><p>For a case study based on a geothermal field in New Zealand's Taupō Volcanic Zone (TVZ), we determined that achieving CDR rates of 1 MtCO<sub>2</sub>/year via new geothermal-BECCS builds would require 62 standard geothermal wells and 790 kt/year of feedstock and result in 511 MWe in installed capacity. In contrast, geothermal-DACCS would need 49 wells and no external fuel source to achieve 1 MtCO<sub>2</sub>/year scale but result in only 190 MWe in installed capacity. Both pathways are calculated to require similar upfront investment costs at $2.2 billion and $2.3 billion for geothermal-BECCS and geothermal-DACCS respectively.</p><p>Although geothermal-DACCS removes CO<sub>2</sub> at high rates, its high parasitic load increases the overall decarbonization cost ($187/tCO<sub>2</sub>). In contrast, when biomass hybridization is considered, geothermal-BECCS has a lower cost of emissions abatement and produces 20 % more electricity than the benchmark geothermal plant. We conclude that this increase in electricity production makes geothermal-BECCS the more cost-effective geothermal-based CDR configuration. Finally, we argue that revenues from net-negative CO<sub>2</sub> emissions and increased power production make geothermal-CDR a cost-competitive decarbonization technology.</p></div>","PeriodicalId":55095,"journal":{"name":"Geothermics","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0375650524002451/pdfft?md5=52e38e8ef821c197e1544f6c5b391d02&pid=1-s2.0-S0375650524002451-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geothermics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375650524002451","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Limiting global temperature rise to between 1.5 and 2 °C will likely require widespread deployment of carbon dioxide removal (CDR) to offset sectors with hard-to-abate emissions. As financial resources for decarbonization are finite, strategic deployment of CDR technologies is essential for maximizing atmospheric CO2 reductions. Carbon capture and sequestration (CCS), using either direct air capture (DACCS) or bioenergy (BECCS) technologies has a particular synergy with geothermal electricity generation. This is because expensive geothermal infrastructure can be leveraged to transport dissolved CO2 for storage in subsurface reservoirs.
Here, we present a techno-economic comparison of renewable electricity generation coupled with either BECCS or DACCS at high-temperature, low-gas hydrothermal systems. We use a systems model that quantifies energy, carbon and financial flows through a generic hybrid power plant. At a CO2 market price of $100/tonne, the geothermal-BECCS system has a lower median cost of electricity generation ($88/MWh) than geothermal-DACCS ($181/MWh) and conventional geothermal ($89/MWh).
Geothermal-BECCS also had the lowest costs of overall emissions abatement, $122/tCO2, accounting for carbon removal and assuming displacement of fossil-fuel generation. Abatement costs are even lower, $45/tCO2, for BECCS retrofit of existing geothermal plants, owing to discounted costs of pre-existing injection wells, steam fields, and plant equipment.
For a case study based on a geothermal field in New Zealand's Taupō Volcanic Zone (TVZ), we determined that achieving CDR rates of 1 MtCO2/year via new geothermal-BECCS builds would require 62 standard geothermal wells and 790 kt/year of feedstock and result in 511 MWe in installed capacity. In contrast, geothermal-DACCS would need 49 wells and no external fuel source to achieve 1 MtCO2/year scale but result in only 190 MWe in installed capacity. Both pathways are calculated to require similar upfront investment costs at $2.2 billion and $2.3 billion for geothermal-BECCS and geothermal-DACCS respectively.
Although geothermal-DACCS removes CO2 at high rates, its high parasitic load increases the overall decarbonization cost ($187/tCO2). In contrast, when biomass hybridization is considered, geothermal-BECCS has a lower cost of emissions abatement and produces 20 % more electricity than the benchmark geothermal plant. We conclude that this increase in electricity production makes geothermal-BECCS the more cost-effective geothermal-based CDR configuration. Finally, we argue that revenues from net-negative CO2 emissions and increased power production make geothermal-CDR a cost-competitive decarbonization technology.
期刊介绍:
Geothermics is an international journal devoted to the research and development of geothermal energy. The International Board of Editors of Geothermics, which comprises specialists in the various aspects of geothermal resources, exploration and development, guarantees the balanced, comprehensive view of scientific and technological developments in this promising energy field.
It promulgates the state of the art and science of geothermal energy, its exploration and exploitation through a regular exchange of information from all parts of the world. The journal publishes articles dealing with the theory, exploration techniques and all aspects of the utilization of geothermal resources. Geothermics serves as the scientific house, or exchange medium, through which the growing community of geothermal specialists can provide and receive information.