A Riemann–Hilbert approach to the existence results for the Benjamin–Ono equation on a half-line

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Liliana Esquivel , Ivonne Rivas
{"title":"A Riemann–Hilbert approach to the existence results for the Benjamin–Ono equation on a half-line","authors":"Liliana Esquivel ,&nbsp;Ivonne Rivas","doi":"10.1016/j.nonrwa.2024.104211","DOIUrl":null,"url":null,"abstract":"<div><p>The main problem addressed in this paper is to study the local existence in time of solutions to the non-homogeneous Neumann initial boundary value problem for the Benjamin–Ono equation on a half-line. In this result, we observe the influence of the boundary data on the behavior of solutions. In order to obtain the characterization of the solution it is essential to use the theory concerning the Riemann–Hilbert problem. We prove local existence in time of the solutions.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824001500","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The main problem addressed in this paper is to study the local existence in time of solutions to the non-homogeneous Neumann initial boundary value problem for the Benjamin–Ono equation on a half-line. In this result, we observe the influence of the boundary data on the behavior of solutions. In order to obtain the characterization of the solution it is essential to use the theory concerning the Riemann–Hilbert problem. We prove local existence in time of the solutions.

半线上本杰明-奥诺方程存在结果的黎曼-希尔伯特方法
本文解决的主要问题是研究半线上本杰明-奥诺方程的非均质 Neumann 初始边界值问题解的局部时间存在性。在这一结果中,我们观察了边界数据对解的行为的影响。为了获得解的特征,必须使用有关黎曼-希尔伯特问题的理论。我们证明了解的时间局部存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信