Synergistic effects of multi-segmented magnetic fields, wavy-segmented cooling, and distributed heating on hybrid nanofluid convective flow in tilted porous enclosures

Q1 Chemical Engineering
{"title":"Synergistic effects of multi-segmented magnetic fields, wavy-segmented cooling, and distributed heating on hybrid nanofluid convective flow in tilted porous enclosures","authors":"","doi":"10.1016/j.ijft.2024.100826","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the complex thermal-fluid behavior within a tilted porous enclosure filled with a Cu−Al<sub>2</sub>O<sub>3</sub>-water hybrid nanofluid, subject to segmented magnetic fields, wavy cooling segments, and distributed heat sources. The research explores the intricate interplay between geometric factors and thermal-magnetic forces to enhance heat transfer in industrial applications. The finite volume method (FVM), coupled with the SIMPLE algorithm and a TDMA solver, is employed to solve the governing transport equations. A comprehensive parametric analysis examines the effects of key dimensionless parameters: Darcy-Rayleigh number (10–10<sup>4</sup>), Darcy number (10<sup>-4</sup>–10<sup>-1</sup>), Hartmann number (0–70), magnetic field angle (0°-180°), nanoparticle volume fraction (0–2 %), porosity (0.1–1.0), wavy cooler undulation height (0–0.3), magnetic segment width (0–1), number of segmental magnetic fields (0–4), and enclosure tilting angle (0°–180°). The study elucidates the physical mechanisms underlying the transition from uniform to segmented heating scenarios. Results reveal a remarkable enhancement of up to 38 % in heat transfer performance when transitioning from a conventional square enclosure to the proposed configuration with partial waviness on opposing walls. This improvement stems from increased surface area and disrupted thermal boundary layers, promoting better fluid mixing. The application of a segmented magnetic field with strategic orientation resulted in up to 26 % enhancement by modulating flow patterns and creating localized convection cells. The segmented heating generates thermal plumes that interact with the magnetic field-induced Lorentz forces, further improving thermal transport. The findings provide valuable insights into the design and optimization of efficient heat transfer systems in various industries, including electronics cooling, solar thermal collectors, and nuclear reactors, demonstrating significant potential for energy savings and improved thermal management through the strategic integration of hybrid nanofluids, magnetic fields, and geometric modifications in porous media applications.</p></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666202724002672/pdfft?md5=8572fe49187fcb551d303f64bb7cb3ab&pid=1-s2.0-S2666202724002672-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666202724002672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the complex thermal-fluid behavior within a tilted porous enclosure filled with a Cu−Al2O3-water hybrid nanofluid, subject to segmented magnetic fields, wavy cooling segments, and distributed heat sources. The research explores the intricate interplay between geometric factors and thermal-magnetic forces to enhance heat transfer in industrial applications. The finite volume method (FVM), coupled with the SIMPLE algorithm and a TDMA solver, is employed to solve the governing transport equations. A comprehensive parametric analysis examines the effects of key dimensionless parameters: Darcy-Rayleigh number (10–104), Darcy number (10-4–10-1), Hartmann number (0–70), magnetic field angle (0°-180°), nanoparticle volume fraction (0–2 %), porosity (0.1–1.0), wavy cooler undulation height (0–0.3), magnetic segment width (0–1), number of segmental magnetic fields (0–4), and enclosure tilting angle (0°–180°). The study elucidates the physical mechanisms underlying the transition from uniform to segmented heating scenarios. Results reveal a remarkable enhancement of up to 38 % in heat transfer performance when transitioning from a conventional square enclosure to the proposed configuration with partial waviness on opposing walls. This improvement stems from increased surface area and disrupted thermal boundary layers, promoting better fluid mixing. The application of a segmented magnetic field with strategic orientation resulted in up to 26 % enhancement by modulating flow patterns and creating localized convection cells. The segmented heating generates thermal plumes that interact with the magnetic field-induced Lorentz forces, further improving thermal transport. The findings provide valuable insights into the design and optimization of efficient heat transfer systems in various industries, including electronics cooling, solar thermal collectors, and nuclear reactors, demonstrating significant potential for energy savings and improved thermal management through the strategic integration of hybrid nanofluids, magnetic fields, and geometric modifications in porous media applications.

Abstract Image

多分段磁场、波浪分段冷却和分布式加热对倾斜多孔腔体内混合纳米流体对流的协同效应
本研究调查了在一个倾斜的多孔外壳内充满铜-Al2O3-水混合纳米流体的复杂热流体行为,该外壳受到分段磁场、波浪形冷却段和分布式热源的影响。该研究探讨了几何因素和热磁力之间错综复杂的相互作用,以增强工业应用中的热传递。研究采用有限体积法 (FVM),结合 SIMPLE 算法和 TDMA 求解器,求解支配传输方程。综合参数分析考察了关键无量纲参数的影响:达西-雷利数 (10-104)、达西数 (10-4-10-1)、哈特曼数 (0-70)、磁场角 (0°-180°)、纳米颗粒体积分数 (0-2%)、孔隙率 (0.1-1.0)、波浪形冷却器起伏高度 (0-0.3)、磁段宽度 (0-1)、磁段磁场数 (0-4) 和外壳倾斜角 (0°-180°)。研究阐明了从均匀加热到分段加热的物理机制。研究结果表明,从传统的方形外壳过渡到对立壁上带有部分波纹的拟议配置时,传热性能显著提高了 38%。这种改进源于表面积的增加和热边界层的破坏,从而促进了更好的流体混合。通过调节流动模式和创建局部对流单元,应用具有战略方向的分段磁场可使效果提高 26%。分段加热产生的热羽流与磁场诱导的洛伦兹力相互作用,进一步改善了热传输。这些发现为设计和优化电子冷却、太阳能集热器和核反应堆等各行各业的高效传热系统提供了宝贵的见解,证明了通过在多孔介质应用中战略性地整合混合纳米流体、磁场和几何改性,在节约能源和改善热管理方面具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Thermofluids
International Journal of Thermofluids Engineering-Mechanical Engineering
CiteScore
10.10
自引率
0.00%
发文量
111
审稿时长
66 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信