{"title":"Algebraic conditions for stability in Runge-Kutta methods and their certification via semidefinite programming","authors":"Austin Juhl, David Shirokoff","doi":"10.1016/j.apnum.2024.08.015","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we present approaches to rigorously certify <em>A</em>- and <span><math><mi>A</mi><mo>(</mo><mi>α</mi><mo>)</mo></math></span>-stability in Runge-Kutta methods through the solution of convex feasibility problems defined by linear matrix inequalities. We adopt two approaches. The first is based on sum-of-squares programming applied to the Runge-Kutta <em>E</em>-polynomial and is applicable to both <em>A</em>- and <span><math><mi>A</mi><mo>(</mo><mi>α</mi><mo>)</mo></math></span>-stability. In the second, we sharpen the algebraic conditions for <em>A</em>-stability of Cooper, Scherer, Türke, and Wendler to incorporate the Runge-Kutta order conditions. We demonstrate how the theoretical improvement enables the practical use of these conditions for certification of <em>A</em>-stability within a computational framework. We then use both approaches to obtain rigorous certificates of stability for several diagonally implicit schemes devised in the literature.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424002113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we present approaches to rigorously certify A- and -stability in Runge-Kutta methods through the solution of convex feasibility problems defined by linear matrix inequalities. We adopt two approaches. The first is based on sum-of-squares programming applied to the Runge-Kutta E-polynomial and is applicable to both A- and -stability. In the second, we sharpen the algebraic conditions for A-stability of Cooper, Scherer, Türke, and Wendler to incorporate the Runge-Kutta order conditions. We demonstrate how the theoretical improvement enables the practical use of these conditions for certification of A-stability within a computational framework. We then use both approaches to obtain rigorous certificates of stability for several diagonally implicit schemes devised in the literature.