A parameter-uniform hybrid method for singularly perturbed parabolic 2D convection-diffusion-reaction problems

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Mrityunjoy Barman , Srinivasan Natesan , Ali Sendur
{"title":"A parameter-uniform hybrid method for singularly perturbed parabolic 2D convection-diffusion-reaction problems","authors":"Mrityunjoy Barman ,&nbsp;Srinivasan Natesan ,&nbsp;Ali Sendur","doi":"10.1016/j.apnum.2024.08.026","DOIUrl":null,"url":null,"abstract":"<div><p>The solution of the singular perturbation problems (SPP) of convection-diffusion-reaction type may exhibit regular and corner layers in a rectangular domain. In this work, we construct and analyze a parameter-uniform operator-splitting alternating direction implicit (ADI) scheme to efficiently solve a two-dimensional parabolic singularly perturbed problem with two positive parameters. The proposed model is a combination of the backward-Euler method defined on a uniform mesh in time and a hybrid method in space defined on a special Shishkin mesh. The analysis is presented on a layer adapted piecewise-uniform Shishkin mesh. The developed numerical method is proved to be first-order convergent in time and almost second-order convergent in space. The numerical experiments are performed to validate the theoretical convergence results and illustrate the efficiency of the current strategy.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424002307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The solution of the singular perturbation problems (SPP) of convection-diffusion-reaction type may exhibit regular and corner layers in a rectangular domain. In this work, we construct and analyze a parameter-uniform operator-splitting alternating direction implicit (ADI) scheme to efficiently solve a two-dimensional parabolic singularly perturbed problem with two positive parameters. The proposed model is a combination of the backward-Euler method defined on a uniform mesh in time and a hybrid method in space defined on a special Shishkin mesh. The analysis is presented on a layer adapted piecewise-uniform Shishkin mesh. The developed numerical method is proved to be first-order convergent in time and almost second-order convergent in space. The numerical experiments are performed to validate the theoretical convergence results and illustrate the efficiency of the current strategy.

奇异扰动抛物线二维对流-扩散-反应问题的参数统一混合方法
对流-扩散-反应型奇异扰动问题(SPP)的解在矩形域中可能会出现规则层和角层。在这项工作中,我们构建并分析了一种参数均匀算子分割交替方向隐式(ADI)方案,用于高效求解具有两个正参数的二维抛物线奇异扰动问题。所提出的模型结合了时间上定义在均匀网格上的后向-欧拉法和空间上定义在特殊 Shishkin 网格上的混合法。分析是在适应层的片状均匀 Shishkin 网格上进行的。事实证明,所开发的数值方法在时间上是一阶收敛的,在空间上几乎是二阶收敛的。数值实验验证了理论收敛结果,并说明了当前策略的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信