A feasible smoothing accelerated projected gradient method for nonsmooth convex optimization

IF 0.8 4区 管理学 Q4 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Akatsuki Nishioka , Yoshihiro Kanno
{"title":"A feasible smoothing accelerated projected gradient method for nonsmooth convex optimization","authors":"Akatsuki Nishioka ,&nbsp;Yoshihiro Kanno","doi":"10.1016/j.orl.2024.107181","DOIUrl":null,"url":null,"abstract":"<div><p>Smoothing accelerated gradient methods achieve faster convergence rates than that of the subgradient method for some nonsmooth convex optimization problems. However, Nesterov's extrapolation may require gradients at infeasible points, and thus they cannot be applied to some structural optimization problems. We introduce a variant of smoothing accelerated projected gradient methods where every variable is feasible. The <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>log</mi><mo>⁡</mo><mi>k</mi><mo>)</mo></math></span> convergence rate is obtained using the Lyapunov function. We conduct a numerical experiment on the robust compliance optimization of a truss structure.</p></div>","PeriodicalId":54682,"journal":{"name":"Operations Research Letters","volume":"57 ","pages":"Article 107181"},"PeriodicalIF":0.8000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167637724001172/pdfft?md5=461018257332522ab26dc80e977a24bc&pid=1-s2.0-S0167637724001172-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research Letters","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167637724001172","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Smoothing accelerated gradient methods achieve faster convergence rates than that of the subgradient method for some nonsmooth convex optimization problems. However, Nesterov's extrapolation may require gradients at infeasible points, and thus they cannot be applied to some structural optimization problems. We introduce a variant of smoothing accelerated projected gradient methods where every variable is feasible. The O(k1logk) convergence rate is obtained using the Lyapunov function. We conduct a numerical experiment on the robust compliance optimization of a truss structure.

非光滑凸优化的可行平滑加速投影梯度法
对于某些非光滑凸优化问题,平滑加速梯度法比子梯度法的收敛速度更快。然而,涅斯捷罗夫外推法可能需要在不可行点上进行梯度计算,因此无法应用于某些结构优化问题。我们引入了一种每个变量都可行的平滑加速投影梯度法的变体。利用 Lyapunov 函数可以获得 O(k-1logk) 的收敛速率。我们对桁架结构的鲁棒顺应性优化进行了数值实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Operations Research Letters
Operations Research Letters 管理科学-运筹学与管理科学
CiteScore
2.10
自引率
9.10%
发文量
111
审稿时长
83 days
期刊介绍: Operations Research Letters is committed to the rapid review and fast publication of short articles on all aspects of operations research and analytics. Apart from a limitation to eight journal pages, quality, originality, relevance and clarity are the only criteria for selecting the papers to be published. ORL covers the broad field of optimization, stochastic models and game theory. Specific areas of interest include networks, routing, location, queueing, scheduling, inventory, reliability, and financial engineering. We wish to explore interfaces with other fields such as life sciences and health care, artificial intelligence and machine learning, energy distribution, and computational social sciences and humanities. Our traditional strength is in methodology, including theory, modelling, algorithms and computational studies. We also welcome novel applications and concise literature reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信