Z.X. Li , L.M. Zhang , W. Wang , Z.K. Li , Y. Zhang , A.L. Ma , Y.G. Zheng
{"title":"New insights into the damage mechanism of a Zr-Ti based bulk metallic glass under cavitation erosion in deionized water","authors":"Z.X. Li , L.M. Zhang , W. Wang , Z.K. Li , Y. Zhang , A.L. Ma , Y.G. Zheng","doi":"10.1016/j.wear.2024.205561","DOIUrl":null,"url":null,"abstract":"<div><p>Bulk metallic glass (BMG), also known as amorphous alloy, which is almost free of structural defects such as grain boundaries and dislocations, is expected to achieve superior cavitation erosion (CE) resistance due to possessing high hardness, elastic modulus and superior corrosion resistance. Compared with the extensively studied crystalline alloys, the damage mechanism of amorphous alloys under CE remains unclear. Herein, the CE behavior and damage mechanism of a Zr-Ti based BMG in deionized water was systematically investigated. Relevant results showed that Zr-Ti based BMG exhibited robust resistance to CE in deionized water. The incubation period of CE was found to be about 4 h, which was significantly longer than that of stainless steels, copper alloys and titanium alloys. Moreover, grazing incidence X-ray diffraction analysis indicated that crystallization was absent throughout the entire CE process. Differential scanning calorimetry demonstrated an increasing free volume of BMG with prolonged CE time, which further led to the formation of micro-porosity by the free volume aggregation, and eventually gave rise to the CE damage.</p></div>","PeriodicalId":23970,"journal":{"name":"Wear","volume":"558 ","pages":"Article 205561"},"PeriodicalIF":5.3000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wear","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043164824003260","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Bulk metallic glass (BMG), also known as amorphous alloy, which is almost free of structural defects such as grain boundaries and dislocations, is expected to achieve superior cavitation erosion (CE) resistance due to possessing high hardness, elastic modulus and superior corrosion resistance. Compared with the extensively studied crystalline alloys, the damage mechanism of amorphous alloys under CE remains unclear. Herein, the CE behavior and damage mechanism of a Zr-Ti based BMG in deionized water was systematically investigated. Relevant results showed that Zr-Ti based BMG exhibited robust resistance to CE in deionized water. The incubation period of CE was found to be about 4 h, which was significantly longer than that of stainless steels, copper alloys and titanium alloys. Moreover, grazing incidence X-ray diffraction analysis indicated that crystallization was absent throughout the entire CE process. Differential scanning calorimetry demonstrated an increasing free volume of BMG with prolonged CE time, which further led to the formation of micro-porosity by the free volume aggregation, and eventually gave rise to the CE damage.
块状金属玻璃(BMG)又称非晶态合金,它几乎不存在晶界和位错等结构缺陷,由于具有高硬度、弹性模量和优异的耐腐蚀性,有望获得优异的抗空化侵蚀(CE)性能。与已被广泛研究的晶体合金相比,非晶态合金在 CE 下的损伤机理仍不清楚。本文系统研究了去离子水中 Zr-Ti 基 BMG 的 CE 行为和损伤机理。相关结果表明,锆钛基 BMG 在去离子水中表现出很强的抗 CE 能力。CE 的潜伏期约为 4 小时,明显长于不锈钢、铜合金和钛合金。此外,掠入射 X 射线衍射分析表明,在整个 CE 过程中都没有出现结晶。差示扫描量热法表明,随着 CE 时间的延长,BMG 的自由体积不断增大,自由体积聚集进一步导致微孔的形成,并最终导致 CE 损伤。
期刊介绍:
Wear journal is dedicated to the advancement of basic and applied knowledge concerning the nature of wear of materials. Broadly, topics of interest range from development of fundamental understanding of the mechanisms of wear to innovative solutions to practical engineering problems. Authors of experimental studies are expected to comment on the repeatability of the data, and whenever possible, conduct multiple measurements under similar testing conditions. Further, Wear embraces the highest standards of professional ethics, and the detection of matching content, either in written or graphical form, from other publications by the current authors or by others, may result in rejection.