Influence of B, Si, Ge, and As impurities on the electronic properties of graphene quantum dot: A density functional theory study

Salam K. Khamees , Fouad N. Ajeel , Kareem H. Mohsin , Mohammed N. Mutier
{"title":"Influence of B, Si, Ge, and As impurities on the electronic properties of graphene quantum dot: A density functional theory study","authors":"Salam K. Khamees ,&nbsp;Fouad N. Ajeel ,&nbsp;Kareem H. Mohsin ,&nbsp;Mohammed N. Mutier","doi":"10.1016/j.nwnano.2024.100049","DOIUrl":null,"url":null,"abstract":"<div><p>The electronic features of chemically functionalized graphene quantum dots (GQDs) are investigated using density functional theory (DFT). The fabrication of nanoscale devices needs to enhance- the electronic performance of customized GQDs, which is crucial in many applications. GQDs can be used as a model with the molecule C<sub>24</sub>H<sub>12</sub>. We investigated the effects of adding metalloid impurities) boron B, silicon Si, germanium Ge, and arsenic As) on the structure and electronic properties of the dots at the B3LYP/6–31 level using the Gaussian 09 program package. The obtained results show efficient adding impurities B, Si, Ge, and As on the structure and electronic properties of GQDs, where it is noted that the energy gap change with -3.085, -12.340, -13.907, and -66.846 %, respectively.These results not only advance our knowledge of the mechanisms behind chemical doping, which may change the electronic features of quantum dots, but they also provide support for the development of nanodevices that have better electronic performance. As observed with As/GQD, it is anticipated that this system, which has the lowest possible chemical hardness values, will function as an effective corrosion inhibitor.</p></div>","PeriodicalId":100942,"journal":{"name":"Nano Trends","volume":"7 ","pages":"Article 100049"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666978124000199/pdfft?md5=b528ec7dbeb5be99f0dc4b9de2f3d87c&pid=1-s2.0-S2666978124000199-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666978124000199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The electronic features of chemically functionalized graphene quantum dots (GQDs) are investigated using density functional theory (DFT). The fabrication of nanoscale devices needs to enhance- the electronic performance of customized GQDs, which is crucial in many applications. GQDs can be used as a model with the molecule C24H12. We investigated the effects of adding metalloid impurities) boron B, silicon Si, germanium Ge, and arsenic As) on the structure and electronic properties of the dots at the B3LYP/6–31 level using the Gaussian 09 program package. The obtained results show efficient adding impurities B, Si, Ge, and As on the structure and electronic properties of GQDs, where it is noted that the energy gap change with -3.085, -12.340, -13.907, and -66.846 %, respectively.These results not only advance our knowledge of the mechanisms behind chemical doping, which may change the electronic features of quantum dots, but they also provide support for the development of nanodevices that have better electronic performance. As observed with As/GQD, it is anticipated that this system, which has the lowest possible chemical hardness values, will function as an effective corrosion inhibitor.

Abstract Image

B、Si、Ge 和 As 杂质对石墨烯量子点电子特性的影响:密度泛函理论研究
利用密度泛函理论(DFT)研究了化学功能化石墨烯量子点(GQDs)的电子特性。纳米级器件的制造需要提高定制 GQDs 的电子性能,这在许多应用中都至关重要。GQDs 可以用 C24H12 分子作为模型。我们使用高斯 09 程序包,在 B3LYP/6-31 水平上研究了添加金属类杂质(硼 B、硅 Si、锗 Ge 和砷 As)对点的结构和电子特性的影响。结果表明,添加杂质 B、Si、Ge 和 As 能有效地改变 GQDs 的结构和电子特性,其中能隙的变化率分别为 -3.085%、-12.340%、-13.907% 和 -66.846%。正如在 As/GQD 中观察到的那样,预计这种具有最低化学硬度值的系统将成为一种有效的腐蚀抑制剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信