Jianxin Tang , Jitao Qu , Shihui Song , Zhili Zhao , Qian Du
{"title":"GCNT: Identify influential seed set effectively in social networks by integrating graph convolutional networks with graph transformers","authors":"Jianxin Tang , Jitao Qu , Shihui Song , Zhili Zhao , Qian Du","doi":"10.1016/j.jksuci.2024.102183","DOIUrl":null,"url":null,"abstract":"<div><p>Exploring effective and efficient strategies for identifying influential nodes from social networks as seeds to promote the propagation of influence remains a crucial challenge in the field of influence maximization (IM), which has attracted significant research efforts. Deep learning-based approaches have been adopted as an alternative promising solution to the IM problem. However, a robust model that captures the associations between network information and node influence needs to be investigated, while concurrently considering the effects of the overlapped influence on training labels. To address these challenges, a GCNT model, which integrates Graph Convolutional Networks with Graph Transformers, is introduced in this paper to capture the intricate relationships among the topology of the network, node attributes, and node influence effectively. Furthermore, an innovative method called <span><math><mrow><mi>G</mi><mi>r</mi><mi>e</mi><mi>e</mi><mi>d</mi><mi>y</mi></mrow></math></span>-<span><math><mrow><mi>L</mi><mi>I</mi><mi>E</mi></mrow></math></span> is proposed to generate labels to alleviate the issue of overlapped influence spread. Moreover, a Mask mechanism specially tailored for the IM problem is presented along with an input embedding balancing strategy. The effectiveness of the GCNT model is demonstrated through comprehensive experiments conducted on six real-world networks, and the model shows its competitive performance in terms of both influence maximization and computational efficiency over state-of-the-art methods.</p></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319157824002726/pdfft?md5=fb687d0a26ab54db6f7c889e608384a1&pid=1-s2.0-S1319157824002726-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of King Saud University-Computer and Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1319157824002726","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Exploring effective and efficient strategies for identifying influential nodes from social networks as seeds to promote the propagation of influence remains a crucial challenge in the field of influence maximization (IM), which has attracted significant research efforts. Deep learning-based approaches have been adopted as an alternative promising solution to the IM problem. However, a robust model that captures the associations between network information and node influence needs to be investigated, while concurrently considering the effects of the overlapped influence on training labels. To address these challenges, a GCNT model, which integrates Graph Convolutional Networks with Graph Transformers, is introduced in this paper to capture the intricate relationships among the topology of the network, node attributes, and node influence effectively. Furthermore, an innovative method called - is proposed to generate labels to alleviate the issue of overlapped influence spread. Moreover, a Mask mechanism specially tailored for the IM problem is presented along with an input embedding balancing strategy. The effectiveness of the GCNT model is demonstrated through comprehensive experiments conducted on six real-world networks, and the model shows its competitive performance in terms of both influence maximization and computational efficiency over state-of-the-art methods.
期刊介绍:
In 2022 the Journal of King Saud University - Computer and Information Sciences will become an author paid open access journal. Authors who submit their manuscript after October 31st 2021 will be asked to pay an Article Processing Charge (APC) after acceptance of their paper to make their work immediately, permanently, and freely accessible to all. The Journal of King Saud University Computer and Information Sciences is a refereed, international journal that covers all aspects of both foundations of computer and its practical applications.