{"title":"Image vectorization using a sparse patch layout","authors":"K. He, J.B.T.M. Roerdink, J. Kosinka","doi":"10.1016/j.gmod.2024.101229","DOIUrl":null,"url":null,"abstract":"<div><p>Mesh-based image vectorization techniques have been studied for a long time, mostly owing to their compactness and flexibility in capturing image features. However, existing methods often lead to relatively dense meshes, especially when applied to images with high-frequency details or textures. We present a novel method that automatically vectorizes an image into a sparse collection of Coons patches whose size adapts to image features. To balance the number of patches and the accuracy of feature alignment, we generate the layout based on a harmonic cross field constrained by image features. We support T-junctions, which keeps the number of patches low and ensures local adaptation to feature density, naturally complemented by varying mesh-color resolution over the patches. Our experimental results demonstrate the utility, accuracy, and sparsity of our method.</p></div>","PeriodicalId":55083,"journal":{"name":"Graphical Models","volume":"135 ","pages":"Article 101229"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1524070324000171/pdfft?md5=68d700973ee613d865f875bbdad4d05d&pid=1-s2.0-S1524070324000171-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphical Models","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1524070324000171","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Mesh-based image vectorization techniques have been studied for a long time, mostly owing to their compactness and flexibility in capturing image features. However, existing methods often lead to relatively dense meshes, especially when applied to images with high-frequency details or textures. We present a novel method that automatically vectorizes an image into a sparse collection of Coons patches whose size adapts to image features. To balance the number of patches and the accuracy of feature alignment, we generate the layout based on a harmonic cross field constrained by image features. We support T-junctions, which keeps the number of patches low and ensures local adaptation to feature density, naturally complemented by varying mesh-color resolution over the patches. Our experimental results demonstrate the utility, accuracy, and sparsity of our method.
基于网格的图像矢量化技术已被研究了很长时间,这主要归功于其在捕捉图像特征时的紧凑性和灵活性。然而,现有的方法通常会产生相对密集的网格,尤其是在应用于具有高频细节或纹理的图像时。我们提出了一种新方法,它能自动将图像矢量化为稀疏的 Coons 补丁集合,其大小可适应图像特征。为了平衡补丁的数量和特征对齐的准确性,我们根据受图像特征约束的谐波交叉场生成布局。我们支持 T 型连接,这样既能保持较低的补丁数量,又能确保局部适应特征密度,同时还能通过补丁上不同的网格颜色分辨率进行自然补充。我们的实验结果证明了我们方法的实用性、准确性和稀疏性。
期刊介绍:
Graphical Models is recognized internationally as a highly rated, top tier journal and is focused on the creation, geometric processing, animation, and visualization of graphical models and on their applications in engineering, science, culture, and entertainment. GMOD provides its readers with thoroughly reviewed and carefully selected papers that disseminate exciting innovations, that teach rigorous theoretical foundations, that propose robust and efficient solutions, or that describe ambitious systems or applications in a variety of topics.
We invite papers in five categories: research (contributions of novel theoretical or practical approaches or solutions), survey (opinionated views of the state-of-the-art and challenges in a specific topic), system (the architecture and implementation details of an innovative architecture for a complete system that supports model/animation design, acquisition, analysis, visualization?), application (description of a novel application of know techniques and evaluation of its impact), or lecture (an elegant and inspiring perspective on previously published results that clarifies them and teaches them in a new way).
GMOD offers its authors an accelerated review, feedback from experts in the field, immediate online publication of accepted papers, no restriction on color and length (when justified by the content) in the online version, and a broad promotion of published papers. A prestigious group of editors selected from among the premier international researchers in their fields oversees the review process.