Daniel E. Ochoa , Nicolas Espitia , Jorge I. Poveda
{"title":"Prescribed-time stability in switching systems with resets: A hybrid dynamical systems approach","authors":"Daniel E. Ochoa , Nicolas Espitia , Jorge I. Poveda","doi":"10.1016/j.sysconle.2024.105910","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the problem of achieving prescribed-time stability (PT-S) in a class of hybrid dynamical systems that incorporate switching nonlinear dynamics, exogenous inputs, and resets. By “prescribed-time stability”, we refer to the property of having the main state of the system converge to a particular compact set of interest before a given time defined <em>a priori</em> by the user. We focus on hybrid systems that achieve this property via time-varying gains. For continuous-time systems, this approach has received significant attention in recent years, with various applications in control, optimization, and estimation problems. However, its extensions beyond continuous-time systems have been limited. This gap motivates this paper, which introduces a novel class of switching conditions for switching systems with resets that incorporate time-varying gains, ensuring the PT-S property even in the presence of unstable modes. The analysis leverages tools from hybrid dynamical system’s theory, and a contraction–dilation property that is established for the hybrid time domains of the solutions of the system. We present the model and main results in a general framework, and subsequently apply them to two different problems: (a) PT control of dynamic plants with uncertainty and intermittent feedback; and (b) PT decision-making in non-cooperative switching games using algorithms that incorporate momentum, resets, and dynamic gains. Numerical results are presented to illustrate all our results.</p></div>","PeriodicalId":49450,"journal":{"name":"Systems & Control Letters","volume":"193 ","pages":"Article 105910"},"PeriodicalIF":2.1000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167691124001981/pdfft?md5=7113c8ef717731574333b9b3f2ebc7b1&pid=1-s2.0-S0167691124001981-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems & Control Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167691124001981","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the problem of achieving prescribed-time stability (PT-S) in a class of hybrid dynamical systems that incorporate switching nonlinear dynamics, exogenous inputs, and resets. By “prescribed-time stability”, we refer to the property of having the main state of the system converge to a particular compact set of interest before a given time defined a priori by the user. We focus on hybrid systems that achieve this property via time-varying gains. For continuous-time systems, this approach has received significant attention in recent years, with various applications in control, optimization, and estimation problems. However, its extensions beyond continuous-time systems have been limited. This gap motivates this paper, which introduces a novel class of switching conditions for switching systems with resets that incorporate time-varying gains, ensuring the PT-S property even in the presence of unstable modes. The analysis leverages tools from hybrid dynamical system’s theory, and a contraction–dilation property that is established for the hybrid time domains of the solutions of the system. We present the model and main results in a general framework, and subsequently apply them to two different problems: (a) PT control of dynamic plants with uncertainty and intermittent feedback; and (b) PT decision-making in non-cooperative switching games using algorithms that incorporate momentum, resets, and dynamic gains. Numerical results are presented to illustrate all our results.
期刊介绍:
Founded in 1981 by two of the pre-eminent control theorists, Roger Brockett and Jan Willems, Systems & Control Letters is one of the leading journals in the field of control theory. The aim of the journal is to allow dissemination of relatively concise but highly original contributions whose high initial quality enables a relatively rapid review process. All aspects of the fields of systems and control are covered, especially mathematically-oriented and theoretical papers that have a clear relevance to engineering, physical and biological sciences, and even economics. Application-oriented papers with sophisticated and rigorous mathematical elements are also welcome.