{"title":"Binding- and activity-based small molecule fluorescent probes for the detection of Cu+, Cu2+, Fe2+ and Fe3+ in biological systems","authors":"","doi":"10.1016/j.ccr.2024.216201","DOIUrl":null,"url":null,"abstract":"<div><p>Although transition metals make up less than 0.1 % of the total mass in a human body, they have significant impacts on fundamental biological processes. Among them, copper(I) (Cu<sup>+</sup>), copper(II) (Cu<sup>2+</sup>), ferrous ion (Fe<sup>2+</sup>) and ferric ion (Fe<sup>3+</sup>) exhibited many vital biochemical events. Therefore, precisely monitoring their biological distribution and concentrations <em>via</em> modern analytical techniques are urgently required. In particular, small molecule fluorescent probes have enabled the real-time and <em>in suit</em> detection of the dynamic fluctuations and spatiotemporal distribution of these transition metal ions. In this work, abundant representative binding- and activity-based small molecule fluorescent probes for monitoring of Cu<sup>+</sup>, Cu<sup>2+</sup>, Fe<sup>2+</sup> and Fe<sup>3+</sup> from 2020 to 2024 are showcased. Moreover, the molecular design strategies, monitoring mechanisms, and biological applications of these fluorescence probes are described in detail. Furthermore, the strengths and weaknesses of various types of metal ion-responsive molecular probes are analyzed and discussed. In this regard, our underlying goal is to encourage the development of innovative small molecule fluorescent probes for detecting transition metal ions.</p></div>","PeriodicalId":289,"journal":{"name":"Coordination Chemistry Reviews","volume":null,"pages":null},"PeriodicalIF":20.3000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coordination Chemistry Reviews","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010854524005472","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Although transition metals make up less than 0.1 % of the total mass in a human body, they have significant impacts on fundamental biological processes. Among them, copper(I) (Cu+), copper(II) (Cu2+), ferrous ion (Fe2+) and ferric ion (Fe3+) exhibited many vital biochemical events. Therefore, precisely monitoring their biological distribution and concentrations via modern analytical techniques are urgently required. In particular, small molecule fluorescent probes have enabled the real-time and in suit detection of the dynamic fluctuations and spatiotemporal distribution of these transition metal ions. In this work, abundant representative binding- and activity-based small molecule fluorescent probes for monitoring of Cu+, Cu2+, Fe2+ and Fe3+ from 2020 to 2024 are showcased. Moreover, the molecular design strategies, monitoring mechanisms, and biological applications of these fluorescence probes are described in detail. Furthermore, the strengths and weaknesses of various types of metal ion-responsive molecular probes are analyzed and discussed. In this regard, our underlying goal is to encourage the development of innovative small molecule fluorescent probes for detecting transition metal ions.
期刊介绍:
Coordination Chemistry Reviews offers rapid publication of review articles on current and significant topics in coordination chemistry, encompassing organometallic, supramolecular, theoretical, and bioinorganic chemistry. It also covers catalysis, materials chemistry, and metal-organic frameworks from a coordination chemistry perspective. Reviews summarize recent developments or discuss specific techniques, welcoming contributions from both established and emerging researchers.
The journal releases special issues on timely subjects, including those featuring contributions from specific regions or conferences. Occasional full-length book articles are also featured. Additionally, special volumes cover annual reviews of main group chemistry, transition metal group chemistry, and organometallic chemistry. These comprehensive reviews are vital resources for those engaged in coordination chemistry, further establishing Coordination Chemistry Reviews as a hub for insightful surveys in inorganic and physical inorganic chemistry.