{"title":"Bacterial gene expression in response to catecholamine stress hormones","authors":"Meryem Boujnane, Amine Mohamed Boukerb, Nathalie Connil","doi":"10.1016/j.coemr.2024.100543","DOIUrl":null,"url":null,"abstract":"<div><p>Bacteria–host communication plays a crucial role in symbiosis and pathogenesis. Investigations of pathogenic bacterial responses to host neurotransmitters, including catecholamines, have been the subject of several studies. Both Epinephrine (Epi) and Norepinephrine (NE) catecholamines can modulate bacterial physiology, affecting growth, motility, biofilm formation, virulence, and interactions with eukaryotic cells. This has been widely described in Gram-negative bacteria and mostly for pathogens (<em>i.e</em>. <em>Escherichia coli</em>, <em>Campylobacter jejuni</em>, <em>Salmonella enterica,</em> and <em>Vibrio cholerae</em>). In this review, we focused on whole and targeted bacterial gene expression that have been modulated upon exposure to Epi and NE catecholamines. A wide range of these genes were involved in various physiological aspects (<em>i.e</em>. general metabolism, stress responses, uptake/transport, motility, biofilm, and virulence).</p></div>","PeriodicalId":52218,"journal":{"name":"Current Opinion in Endocrine and Metabolic Research","volume":"36 ","pages":"Article 100543"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Endocrine and Metabolic Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451965024000413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Bacteria–host communication plays a crucial role in symbiosis and pathogenesis. Investigations of pathogenic bacterial responses to host neurotransmitters, including catecholamines, have been the subject of several studies. Both Epinephrine (Epi) and Norepinephrine (NE) catecholamines can modulate bacterial physiology, affecting growth, motility, biofilm formation, virulence, and interactions with eukaryotic cells. This has been widely described in Gram-negative bacteria and mostly for pathogens (i.e. Escherichia coli, Campylobacter jejuni, Salmonella enterica, and Vibrio cholerae). In this review, we focused on whole and targeted bacterial gene expression that have been modulated upon exposure to Epi and NE catecholamines. A wide range of these genes were involved in various physiological aspects (i.e. general metabolism, stress responses, uptake/transport, motility, biofilm, and virulence).
细菌与宿主的交流在共生和致病过程中起着至关重要的作用。病原细菌对宿主神经递质(包括儿茶酚胺)的反应是多项研究的主题。肾上腺素(Epi)和去甲肾上腺素(NE)儿茶酚胺都能调节细菌的生理机能,影响其生长、运动、生物膜形成、毒力以及与真核细胞的相互作用。这在革兰氏阴性细菌中得到了广泛的描述,并且主要针对病原体(即大肠杆菌、空肠弯曲杆菌、肠炎沙门氏菌和霍乱弧菌)。在这篇综述中,我们重点讨论了暴露于 Epi 和 NE 儿茶酚胺后受到调控的细菌全基因和靶基因表达。这些基因广泛涉及各种生理方面(即一般新陈代谢、应激反应、吸收/转运、运动、生物膜和毒力)。