Helle Hagli Sønnervik, Mohamed Kais Msakni, Peter Schütz
{"title":"Decarbonizing the Norwegian fishery fleet – strategic fleet renewal with environmental considerations","authors":"Helle Hagli Sønnervik, Mohamed Kais Msakni, Peter Schütz","doi":"10.1016/j.martra.2024.100118","DOIUrl":null,"url":null,"abstract":"<div><p>This study addresses the pressing need for the Norwegian fishery sector to align with national reduction targets and mitigate its environmental impact. Norway has committed to reducing GHG emissions from the fishery sector by at least 40% by 2030 and 95% by 2050. We propose a mathematical model designed for the strategic renewal of the Norwegian fishing fleet by introducing low- and zero-emission propulsion systems. This model generates fleet renewal schedules that minimize the total operational and renewal costs while ensuring compliance with emission targets. We apply our model to a case study based on the Norwegian fishing fleet and determine the optimal decarbonization strategy. We then analyze the impact of changes in energy costs and emission taxes on this strategy through a sensitivity analysis Our results indicate that (1) fleet renewal is mainly driven by the emission reduction targets, rather than economic benefits, and (2) zero-emission propulsion systems are preferable to low-emission propulsion systems when decarbonizing the fleet.</p></div>","PeriodicalId":100885,"journal":{"name":"Maritime Transport Research","volume":"7 ","pages":"Article 100118"},"PeriodicalIF":3.9000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666822X24000169/pdfft?md5=fe626582fed6f047b52c48a982e4cc99&pid=1-s2.0-S2666822X24000169-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Maritime Transport Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666822X24000169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0
Abstract
This study addresses the pressing need for the Norwegian fishery sector to align with national reduction targets and mitigate its environmental impact. Norway has committed to reducing GHG emissions from the fishery sector by at least 40% by 2030 and 95% by 2050. We propose a mathematical model designed for the strategic renewal of the Norwegian fishing fleet by introducing low- and zero-emission propulsion systems. This model generates fleet renewal schedules that minimize the total operational and renewal costs while ensuring compliance with emission targets. We apply our model to a case study based on the Norwegian fishing fleet and determine the optimal decarbonization strategy. We then analyze the impact of changes in energy costs and emission taxes on this strategy through a sensitivity analysis Our results indicate that (1) fleet renewal is mainly driven by the emission reduction targets, rather than economic benefits, and (2) zero-emission propulsion systems are preferable to low-emission propulsion systems when decarbonizing the fleet.