Conjunctive optimal design of water and power networks

IF 5.9 1区 地球科学 Q1 ENGINEERING, CIVIL
{"title":"Conjunctive optimal design of water and power networks","authors":"","doi":"10.1016/j.jhydrol.2024.131932","DOIUrl":null,"url":null,"abstract":"<div><p>Water distribution systems (WDS) and power grids (PG) are critical infrastructure systems that are vital to all human activity. As such, their quality of service is of great importance for economic, environmental, and human welfare reasons. Although traditionally being analyzed separately, the two systems are interconnected and can mutually affect one another. In order to utilize the potential benefits that the two systems can produce for each other, their design and operation should be analyzed conjunctively. In this paper, a conjunctive optimal design approach for water and power networks is presented, with the objective of finding the dimensions of the systems’ facilities that will result in minimal overall costs, for both design and operation. The model is formulated and implemented on two example applications using an off-the-shelf nonlinear solver by MATLAB and compared to the optimal design of the independent WDS. A sensitivity analysis is performed to provide validity to the obtained results. The conjunctive design is compared to the design of an independent WDS to emphasize the effect of including the PG in the optimization problem. Results show a clear link between the availability of renewable energy and sizing of WDS components. The design of the independent WDS leads to the violation of PG constraints, which are satisfied when including both systems under a single optimization model, demonstrating the importance of a holistic design approach.</p></div>","PeriodicalId":362,"journal":{"name":"Journal of Hydrology","volume":null,"pages":null},"PeriodicalIF":5.9000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022169424013283/pdfft?md5=917a7181b3eef59640ab8dc2e215e693&pid=1-s2.0-S0022169424013283-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022169424013283","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Water distribution systems (WDS) and power grids (PG) are critical infrastructure systems that are vital to all human activity. As such, their quality of service is of great importance for economic, environmental, and human welfare reasons. Although traditionally being analyzed separately, the two systems are interconnected and can mutually affect one another. In order to utilize the potential benefits that the two systems can produce for each other, their design and operation should be analyzed conjunctively. In this paper, a conjunctive optimal design approach for water and power networks is presented, with the objective of finding the dimensions of the systems’ facilities that will result in minimal overall costs, for both design and operation. The model is formulated and implemented on two example applications using an off-the-shelf nonlinear solver by MATLAB and compared to the optimal design of the independent WDS. A sensitivity analysis is performed to provide validity to the obtained results. The conjunctive design is compared to the design of an independent WDS to emphasize the effect of including the PG in the optimization problem. Results show a clear link between the availability of renewable energy and sizing of WDS components. The design of the independent WDS leads to the violation of PG constraints, which are satisfied when including both systems under a single optimization model, demonstrating the importance of a holistic design approach.

水电网络的联合优化设计
配水系统(WDS)和电网(PG)是对所有人类活动都至关重要的关键基础设施系统。因此,它们的服务质量对经济、环境和人类福祉都非常重要。虽然这两个系统传统上是分开分析的,但它们是相互关联的,可以相互影响。为了利用这两个系统可以相互产生的潜在效益,应该对它们的设计和运行进行联合分析。本文提出了一种水网和电网的联合优化设计方法,目的是找到能使设计和运行的总成本最小的系统设施尺寸。利用 MATLAB 的现成非线性求解器,在两个示例应用中制定并实施了该模型,并与独立水电系统的优化设计进行了比较。还进行了敏感性分析,以确保所获结果的有效性。将连接设计与独立 WDS 的设计进行比较,以强调将 PG 纳入优化问题的效果。结果表明,可再生能源的可用性与 WDS 组件的大小之间存在明显联系。独立 WDS 的设计会导致违反 PG 约束条件,而将两个系统都纳入单一优化模型时,PG 约束条件就会得到满足,这说明了整体设计方法的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Hydrology
Journal of Hydrology 地学-地球科学综合
CiteScore
11.00
自引率
12.50%
发文量
1309
审稿时长
7.5 months
期刊介绍: The Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology and hydrogeology. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, hydraulics, agrohydrology, geomorphology, soil science, instrumentation and remote sensing, civil and environmental engineering are included. Social science perspectives on hydrological problems such as resource and ecological economics, environmental sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信