{"title":"Synergy performance of hybrid fiber-reinforced ultra-high-performance cementitious composites with low fiber contents","authors":"","doi":"10.1016/j.compositesa.2024.108423","DOIUrl":null,"url":null,"abstract":"<div><p>This study aims to assess the synergistic tensile performance resulting from the hybridization of long and short fibers. Three types of long steel,fibers, i.e., twisted, hooked, and smooth fibers, along with two types of short fibers, i.e., smooth and polyamide fibers, were incorporated into ultra-high-performance concrete (UHPC) at a total volume content of 1.5%. To predict the tensile resistance of the hybridizations, various machine learning models, including artificial neural network (ANN), decision tree (DT), random forest (RF), and support vector machine (SVM), were applied by utilizing a significant number of collected experimental results. Experimental findings demonstrated that the hybridization of long and short fibers effectively enhanced tensile resistance compared to mono fibers. These hybridizations exhibited negative synergy factors in post-cracking strength but positive synergy factors in both strain capacity and specific work to fracture. Predictions using machine learning models revealed that the RF model exhibited outstanding performance in predicting the tensile resistance of the hybridizations. Furthermore, the compressive strength of the matrix was found to be the most important factor affecting post-cracking strength, whereas fiber length had the most substantial impact on the strain capacity.</p></div>","PeriodicalId":282,"journal":{"name":"Composites Part A: Applied Science and Manufacturing","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part A: Applied Science and Manufacturing","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359835X24004202","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to assess the synergistic tensile performance resulting from the hybridization of long and short fibers. Three types of long steel,fibers, i.e., twisted, hooked, and smooth fibers, along with two types of short fibers, i.e., smooth and polyamide fibers, were incorporated into ultra-high-performance concrete (UHPC) at a total volume content of 1.5%. To predict the tensile resistance of the hybridizations, various machine learning models, including artificial neural network (ANN), decision tree (DT), random forest (RF), and support vector machine (SVM), were applied by utilizing a significant number of collected experimental results. Experimental findings demonstrated that the hybridization of long and short fibers effectively enhanced tensile resistance compared to mono fibers. These hybridizations exhibited negative synergy factors in post-cracking strength but positive synergy factors in both strain capacity and specific work to fracture. Predictions using machine learning models revealed that the RF model exhibited outstanding performance in predicting the tensile resistance of the hybridizations. Furthermore, the compressive strength of the matrix was found to be the most important factor affecting post-cracking strength, whereas fiber length had the most substantial impact on the strain capacity.
期刊介绍:
Composites Part A: Applied Science and Manufacturing is a comprehensive journal that publishes original research papers, review articles, case studies, short communications, and letters covering various aspects of composite materials science and technology. This includes fibrous and particulate reinforcements in polymeric, metallic, and ceramic matrices, as well as 'natural' composites like wood and biological materials. The journal addresses topics such as properties, design, and manufacture of reinforcing fibers and particles, novel architectures and concepts, multifunctional composites, advancements in fabrication and processing, manufacturing science, process modeling, experimental mechanics, microstructural characterization, interfaces, prediction and measurement of mechanical, physical, and chemical behavior, and performance in service. Additionally, articles on economic and commercial aspects, design, and case studies are welcomed. All submissions undergo rigorous peer review to ensure they contribute significantly and innovatively, maintaining high standards for content and presentation. The editorial team aims to expedite the review process for prompt publication.