Extracting explicit coefficient formulas: A robust approach to the laplace residual power series method

IF 6.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
{"title":"Extracting explicit coefficient formulas: A robust approach to the laplace residual power series method","authors":"","doi":"10.1016/j.aej.2024.08.091","DOIUrl":null,"url":null,"abstract":"<div><p>This work presents a novel advancement to the Laplace Residual Power Series Method (LRPSM) for solving fractional differential equations by specifically utilizing the Caputo fractional derivative. The conventional LRPSM relies on iterative calculations of the residual function to determine the series coefficients. We address this limitation by deriving a direct formula that yields all coefficients at once. This innovation significantly streamlines the computational process compared to the traditional LRPSM, leading to a more efficient method.</p></div>","PeriodicalId":7484,"journal":{"name":"alexandria engineering journal","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1110016824009888/pdfft?md5=d3e591329c35bded22686c9a4da5c693&pid=1-s2.0-S1110016824009888-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"alexandria engineering journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110016824009888","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents a novel advancement to the Laplace Residual Power Series Method (LRPSM) for solving fractional differential equations by specifically utilizing the Caputo fractional derivative. The conventional LRPSM relies on iterative calculations of the residual function to determine the series coefficients. We address this limitation by deriving a direct formula that yields all coefficients at once. This innovation significantly streamlines the computational process compared to the traditional LRPSM, leading to a more efficient method.

提取显式系数公式:拉普拉斯残差幂级数法的稳健方法
本研究提出了拉普拉斯残差幂级数法(LRPSM)的新进展,特别是利用卡普托分数导数来求解分数微分方程。传统的拉普拉斯残差幂级数法依赖于对残差函数的迭代计算来确定级数系数。我们通过直接推导公式,一次性得出所有系数,从而解决了这一局限性。与传统的 LRPSM 相比,这一创新大大简化了计算过程,从而产生了一种更高效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
alexandria engineering journal
alexandria engineering journal Engineering-General Engineering
CiteScore
11.20
自引率
4.40%
发文量
1015
审稿时长
43 days
期刊介绍: Alexandria Engineering Journal is an international journal devoted to publishing high quality papers in the field of engineering and applied science. Alexandria Engineering Journal is cited in the Engineering Information Services (EIS) and the Chemical Abstracts (CA). The papers published in Alexandria Engineering Journal are grouped into five sections, according to the following classification: • Mechanical, Production, Marine and Textile Engineering • Electrical Engineering, Computer Science and Nuclear Engineering • Civil and Architecture Engineering • Chemical Engineering and Applied Sciences • Environmental Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信