Rotating hydrothermal route to red mud derived uniform hierarchical porous flowerlike boehmite (γ-AlOOH) microspheres: Force analysis on formation mechanism and superior adsorption performances for anionic dyes removal

IF 4.1 2区 材料科学 Q2 ENGINEERING, CHEMICAL
{"title":"Rotating hydrothermal route to red mud derived uniform hierarchical porous flowerlike boehmite (γ-AlOOH) microspheres: Force analysis on formation mechanism and superior adsorption performances for anionic dyes removal","authors":"","doi":"10.1016/j.partic.2024.08.006","DOIUrl":null,"url":null,"abstract":"<div><p>Towards increasingly severe worldwide pollution of industrial solid waste red mud (RM) released from aluminum industry, constitutional valuable element Al has been successfully separated for a novel mild rotating hydrothermal synthesis (150 °C, 12 h, 5 Hz) of the uniform hierarchical porous flowerlike boehmite (γ-AlOOH) microspheres in the presence of appropriate urea, which exhibit distinctly small average diameter (1.52 μm) and narrow particle size distribution (PSD: 1.12–1.97 μm), as well as high specific surface area (129.37 m<sup>2</sup> g<sup>−1</sup>). On the one hand, the rotating hydrothermal synthesis promotes the mass and heat transfer, enabling γ-AlOOH microspheres at a lower temperature within a shorter time. On the other hand, moderate rotation provides predominant shear force, rendering the uniform γ-AlOOH microspheres with small average diameter and narrow PSD. The optimal AlOOH–U2M-R5Hz microspheres demonstrate satisfactory adsorption performance for Congo Red (CR) and Methyl Blue (MB), with the maximum adsorption capacities of 602.4 and 1208.7 mg g<sup>−1</sup>, respectively. Various isotherm models of Langmuir, Freundlich, Temkin and Dubinin-Radushkevich are utilized, adsorption kinetics are analyzed, adsorption mechanism is uncovered based on hydrogen bonding and electrostatic attraction. The increase in the temperature or the presence of coexisting cations facilitates the adsorption of CR, whereas coexisting anions weaken the adsorption of CR on the AlOOH–U2M-R5Hz microspheres. Furthermore, the excellent recycling performances and especially dynamic adsorption (retainment of removal efficiency of approx. 99.0% within 1000 min) as well as authentic water bodies (e.g. tap water and river water) simulated wastewater treatment undoubtedly indicate great practical applications of the AlOOH–U2M-R5Hz microspheres, towards cleaner aluminum production and cost-effective sustainable solution to anionic dye-bearing wastewater.</p></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particuology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674200124001615","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Towards increasingly severe worldwide pollution of industrial solid waste red mud (RM) released from aluminum industry, constitutional valuable element Al has been successfully separated for a novel mild rotating hydrothermal synthesis (150 °C, 12 h, 5 Hz) of the uniform hierarchical porous flowerlike boehmite (γ-AlOOH) microspheres in the presence of appropriate urea, which exhibit distinctly small average diameter (1.52 μm) and narrow particle size distribution (PSD: 1.12–1.97 μm), as well as high specific surface area (129.37 m2 g−1). On the one hand, the rotating hydrothermal synthesis promotes the mass and heat transfer, enabling γ-AlOOH microspheres at a lower temperature within a shorter time. On the other hand, moderate rotation provides predominant shear force, rendering the uniform γ-AlOOH microspheres with small average diameter and narrow PSD. The optimal AlOOH–U2M-R5Hz microspheres demonstrate satisfactory adsorption performance for Congo Red (CR) and Methyl Blue (MB), with the maximum adsorption capacities of 602.4 and 1208.7 mg g−1, respectively. Various isotherm models of Langmuir, Freundlich, Temkin and Dubinin-Radushkevich are utilized, adsorption kinetics are analyzed, adsorption mechanism is uncovered based on hydrogen bonding and electrostatic attraction. The increase in the temperature or the presence of coexisting cations facilitates the adsorption of CR, whereas coexisting anions weaken the adsorption of CR on the AlOOH–U2M-R5Hz microspheres. Furthermore, the excellent recycling performances and especially dynamic adsorption (retainment of removal efficiency of approx. 99.0% within 1000 min) as well as authentic water bodies (e.g. tap water and river water) simulated wastewater treatment undoubtedly indicate great practical applications of the AlOOH–U2M-R5Hz microspheres, towards cleaner aluminum production and cost-effective sustainable solution to anionic dye-bearing wastewater.

Abstract Image

通过旋转水热法制备红泥衍生均匀多孔花状波姆石(γ-AlOOH)微球:对形成机理和去除阴离子染料的卓越吸附性能的力分析
针对世界范围内日益严重的铝工业排放的工业固体废弃物赤泥(RM)污染问题,成功分离出宪法规定的有价元素 Al,在适当尿素存在下,通过新型温和旋转水热合成(150 °C,12 h,5 Hz)得到均匀的分层多孔花状玻镁石(γ-AlOOH)微球,该微球表现出明显的平均直径小(1.52 μm)和窄粒度分布(PSD:1.12-1.97 μm),以及高比表面积(129.37 m2 g-1)。一方面,旋转水热合成促进了传质和传热,使γ-AlOOH微球能在较短时间内以较低温度生成。另一方面,适度的旋转提供了主要的剪切力,使γ-AlOOH微球均匀一致,平均直径小,PSD窄。最佳的 AlOOH-U2M-R5Hz 微球对刚果红(CR)和甲基蓝(MB)具有令人满意的吸附性能,最大吸附容量分别为 602.4 和 1208.7 mg g-1。利用 Langmuir、Freundlich、Temkin 和 Dubinin-Radushkevich 等多种等温线模型,分析了吸附动力学,揭示了基于氢键和静电吸引的吸附机理。温度的升高或阳离子的共存促进了 CR 的吸附,而阴离子的共存则削弱了 CR 在 AlOOH-U2M-R5Hz 微球上的吸附。此外,AlOOH-U2M-R5Hz 微球优异的回收性能,尤其是动态吸附性能(1000 分钟内的去除率保持在 99.0%左右),以及在真实水体(如自来水和河水)中模拟废水处理的性能,无疑表明了 AlOOH-U2M-R5Hz 微球在铝清洁生产方面的巨大实际应用价值,以及对阴离子染料废水的经济有效的可持续解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Particuology
Particuology 工程技术-材料科学:综合
CiteScore
6.70
自引率
2.90%
发文量
1730
审稿时长
32 days
期刊介绍: The word ‘particuology’ was coined to parallel the discipline for the science and technology of particles. Particuology is an interdisciplinary journal that publishes frontier research articles and critical reviews on the discovery, formulation and engineering of particulate materials, processes and systems. It especially welcomes contributions utilising advanced theoretical, modelling and measurement methods to enable the discovery and creation of new particulate materials, and the manufacturing of functional particulate-based products, such as sensors. Papers are handled by Thematic Editors who oversee contributions from specific subject fields. These fields are classified into: Particle Synthesis and Modification; Particle Characterization and Measurement; Granular Systems and Bulk Solids Technology; Fluidization and Particle-Fluid Systems; Aerosols; and Applications of Particle Technology. Key topics concerning the creation and processing of particulates include: -Modelling and simulation of particle formation, collective behaviour of particles and systems for particle production over a broad spectrum of length scales -Mining of experimental data for particle synthesis and surface properties to facilitate the creation of new materials and processes -Particle design and preparation including controlled response and sensing functionalities in formation, delivery systems and biological systems, etc. -Experimental and computational methods for visualization and analysis of particulate system. These topics are broadly relevant to the production of materials, pharmaceuticals and food, and to the conversion of energy resources to fuels and protection of the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信