Data fusion strategies for the integration of diverse non-destructive spectral sensors (NDSS) in food analysis

IF 11.8 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Lorenzo Strani , Caterina Durante , Marina Cocchi , Federico Marini , Ingrid Måge , Alessandra Biancolillo
{"title":"Data fusion strategies for the integration of diverse non-destructive spectral sensors (NDSS) in food analysis","authors":"Lorenzo Strani ,&nbsp;Caterina Durante ,&nbsp;Marina Cocchi ,&nbsp;Federico Marini ,&nbsp;Ingrid Måge ,&nbsp;Alessandra Biancolillo","doi":"10.1016/j.trac.2024.117957","DOIUrl":null,"url":null,"abstract":"<div><p>The evolving landscape of agri-food systems, driven by climate change and population growth, necessitates innovative approaches to ensure food integrity, safety, and sustainability. This review explores the role of data fusion strategies, particularly focusing on non-destructive spectroscopic sensors (NDSS) in three key application contexts: in-field monitoring, on/in-line food processing, and food quality authentication. Various data fusion scenarios, including fusing spectra from different spectroscopic platforms, integrating images and spectra, and combining non-spectroscopic sensor data with spectroscopic ones are reviewed. Focus is set on practical considerations, such as selecting the level of data fusion, defining blocks, variable selection, and validation methods, highlighting the importance of tailored approaches based on research aims and data characteristics.</p><p>While combining information from diverse sensors generally enhances information extraction and modelling performance, their implementation in routine applications is still limited and especially studies focused on data fusion models’ performance over time and their maintenance are lacking.</p></div>","PeriodicalId":439,"journal":{"name":"Trends in Analytical Chemistry","volume":"180 ","pages":"Article 117957"},"PeriodicalIF":11.8000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0165993624004400/pdfft?md5=ba7b79557644151f18b5756a5babbdd0&pid=1-s2.0-S0165993624004400-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Analytical Chemistry","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165993624004400","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The evolving landscape of agri-food systems, driven by climate change and population growth, necessitates innovative approaches to ensure food integrity, safety, and sustainability. This review explores the role of data fusion strategies, particularly focusing on non-destructive spectroscopic sensors (NDSS) in three key application contexts: in-field monitoring, on/in-line food processing, and food quality authentication. Various data fusion scenarios, including fusing spectra from different spectroscopic platforms, integrating images and spectra, and combining non-spectroscopic sensor data with spectroscopic ones are reviewed. Focus is set on practical considerations, such as selecting the level of data fusion, defining blocks, variable selection, and validation methods, highlighting the importance of tailored approaches based on research aims and data characteristics.

While combining information from diverse sensors generally enhances information extraction and modelling performance, their implementation in routine applications is still limited and especially studies focused on data fusion models’ performance over time and their maintenance are lacking.

在食品分析中整合多种无损光谱传感器(NDSS)的数据融合策略
在气候变化和人口增长的推动下,农业食品系统的状况不断变化,因此有必要采用创新方法来确保食品的完整性、安全性和可持续性。本综述探讨了数据融合策略的作用,尤其侧重于无损光谱传感器(NDSS)在三个关键应用环境中的作用:现场监测、在线食品加工和食品质量认证。本文综述了各种数据融合方案,包括来自不同光谱平台的光谱融合、图像与光谱的融合以及非光谱传感器数据与光谱数据的融合。重点放在实际考虑因素上,如选择数据融合的级别、定义块、变量选择和验证方法,强调了基于研究目的和数据特征的定制方法的重要性。虽然将来自不同传感器的信息结合在一起通常能提高信息提取和建模性能,但它们在常规应用中的实施仍然有限,尤其缺乏对数据融合模型随时间变化的性能及其维护的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Trends in Analytical Chemistry
Trends in Analytical Chemistry 化学-分析化学
CiteScore
20.00
自引率
4.60%
发文量
257
审稿时长
3.4 months
期刊介绍: TrAC publishes succinct and critical overviews of recent advancements in analytical chemistry, designed to assist analytical chemists and other users of analytical techniques. These reviews offer excellent, up-to-date, and timely coverage of various topics within analytical chemistry. Encompassing areas such as analytical instrumentation, biomedical analysis, biomolecular analysis, biosensors, chemical analysis, chemometrics, clinical chemistry, drug discovery, environmental analysis and monitoring, food analysis, forensic science, laboratory automation, materials science, metabolomics, pesticide-residue analysis, pharmaceutical analysis, proteomics, surface science, and water analysis and monitoring, these critical reviews provide comprehensive insights for practitioners in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信