{"title":"New parameters for the capacitive accelerometer to reduce its measurement error and power consumption","authors":"Zine Ghemari , Salah Belkhiri , Salah Saad","doi":"10.1016/j.meaene.2024.100018","DOIUrl":null,"url":null,"abstract":"<div><p>Capacitive accelerometers are essential components in a wide range of electronic devices, enabling crucial functionalities such as touch sensitivity and proximity detection. Ensuring optimal accuracy is crucial for their effective performance in various applications. A key factor in this accuracy is the frequency margin, a parameter that significantly influences the sensor's ability to detect and respond to changes in capacitance.</p><p>In this article, we will delve deeply into strategies aimed at optimizing capacitive sensors with a focus on improving their frequency margin. By exploring the methodologies and techniques that enhance the sensor's ability to operate within an ideal frequency range, we aim to improve the measurement accuracy of capacitive accelerometers by reducing measurement errors and power consumption. This optimization process involves meticulous calibration of sensor parameters such as sensitivity, resonance frequency, and damping factors to maximize performance under various environmental conditions. The new capacitive accelerometer structure improves sensitivity, linearity, and accuracy through advanced measurement setups and design, offering high-performance acceleration measurements suitable for various applications and reliable data collection and calibration.</p></div>","PeriodicalId":100897,"journal":{"name":"Measurement: Energy","volume":"3 ","pages":"Article 100018"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2950345024000186/pdfft?md5=27354cd3bf30a8c047a62a2039a4f237&pid=1-s2.0-S2950345024000186-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement: Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950345024000186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Capacitive accelerometers are essential components in a wide range of electronic devices, enabling crucial functionalities such as touch sensitivity and proximity detection. Ensuring optimal accuracy is crucial for their effective performance in various applications. A key factor in this accuracy is the frequency margin, a parameter that significantly influences the sensor's ability to detect and respond to changes in capacitance.
In this article, we will delve deeply into strategies aimed at optimizing capacitive sensors with a focus on improving their frequency margin. By exploring the methodologies and techniques that enhance the sensor's ability to operate within an ideal frequency range, we aim to improve the measurement accuracy of capacitive accelerometers by reducing measurement errors and power consumption. This optimization process involves meticulous calibration of sensor parameters such as sensitivity, resonance frequency, and damping factors to maximize performance under various environmental conditions. The new capacitive accelerometer structure improves sensitivity, linearity, and accuracy through advanced measurement setups and design, offering high-performance acceleration measurements suitable for various applications and reliable data collection and calibration.