On interval colouring reorientation number of oriented graphs

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Marta Borowiecka-Olszewska , Ewa Drgas-Burchardt , Rita Zuazua
{"title":"On interval colouring reorientation number of oriented graphs","authors":"Marta Borowiecka-Olszewska ,&nbsp;Ewa Drgas-Burchardt ,&nbsp;Rita Zuazua","doi":"10.1016/j.dam.2024.07.027","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate a proper arc colouring of oriented graphs such that for each vertex the colours of all out-arcs incident with the vertex and the colours of all in-arcs incident with the vertex form intervals of integers. Oriented graphs having such colourings are called interval colourable. We analyse the parameter <span><math><mrow><mi>icr</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow></mrow></math></span>, which denotes the minimum number of arcs of <span><math><mi>D</mi></math></span> that should be reversed so that a resulting oriented graph is interval colourable. We prove that for each non-negative integer <span><math><mi>p</mi></math></span> there exists an oriented graph <span><math><mi>D</mi></math></span> with the property <span><math><mrow><mi>p</mi><mo>≤</mo><mi>icr</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow><mo>≤</mo><mn>4</mn><mi>p</mi><mo>+</mo><mn>1</mn></mrow></math></span>. We show that <span><math><mrow><mi>icr</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow></mrow></math></span> is not monotone with respect to taking subdigraphs. We give an upper bound on <span><math><mrow><mi>icr</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow></mrow></math></span> if <span><math><mi>D</mi></math></span> is an arbitrary oriented graph with finite parameter <span><math><mrow><mi>icr</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow></mrow></math></span>, and next if <span><math><mi>D</mi></math></span> is any orientation of a 2-degenerate graph. Also the exact values of <span><math><mrow><mi>icr</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow></mrow></math></span> for all orientations <span><math><mi>D</mi></math></span> of some generalized Hertz graphs and generalized Sevastjanov rosettes are given. Based on special results concerning the still open problem of finding the largest possible transitive subtournament in a tournament (posed by Erdős and Moser in 1964) we refine the upper bound on <span><math><mrow><mi>icr</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow></mrow></math></span> if <span><math><mi>D</mi></math></span> is a tournament.</p></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"360 ","pages":"Pages 65-80"},"PeriodicalIF":1.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X24003196","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate a proper arc colouring of oriented graphs such that for each vertex the colours of all out-arcs incident with the vertex and the colours of all in-arcs incident with the vertex form intervals of integers. Oriented graphs having such colourings are called interval colourable. We analyse the parameter icr(D), which denotes the minimum number of arcs of D that should be reversed so that a resulting oriented graph is interval colourable. We prove that for each non-negative integer p there exists an oriented graph D with the property picr(D)4p+1. We show that icr(D) is not monotone with respect to taking subdigraphs. We give an upper bound on icr(D) if D is an arbitrary oriented graph with finite parameter icr(D), and next if D is any orientation of a 2-degenerate graph. Also the exact values of icr(D) for all orientations D of some generalized Hertz graphs and generalized Sevastjanov rosettes are given. Based on special results concerning the still open problem of finding the largest possible transitive subtournament in a tournament (posed by Erdős and Moser in 1964) we refine the upper bound on icr(D) if D is a tournament.

论定向图的区间着色重新定向数
我们研究了定向图的适当弧着色,对于每个顶点,与该顶点相关的所有出弧的颜色和与该顶点相关的所有入弧的颜色构成整数区间。具有这种着色的定向图称为区间可着色图。我们分析了参数 icr(D),它表示为了使生成的定向图具有区间可取性而应反转的 D 弧的最小数目。我们证明,对于每个非负整数 p,都存在一个定向图 D,其性质为 p≤icr(D)≤4p+1 。我们证明 icr(D) 在取子图时不是单调的。如果 D 是具有有限参数 icr(D) 的任意定向图,我们给出了 icr(D) 的上限;如果 D 是 2-degenerate 图的任意定向,我们给出了 icr(D) 的下限。此外,还给出了一些广义赫兹图和广义塞瓦斯杰诺夫玫瑰图的所有方向 D 的 icr(D) 的精确值。基于关于寻找锦标赛中最大可能的反式子锦标赛这一至今仍未解决的问题(由厄尔多斯和莫泽在 1964 年提出)的特殊结果,我们完善了如果 D 是锦标赛时 icr(D) 的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信