Huihui Xie , Han Xia , Zihan Qin , Zaichao Dong , Xin Wang , Liang Sun , Yang Liu , Yang Zhang
{"title":"Role of the side chain configuration on the effective recovery of phenolic compounds using polymer inclusion membranes based on tertiary amine","authors":"Huihui Xie , Han Xia , Zihan Qin , Zaichao Dong , Xin Wang , Liang Sun , Yang Liu , Yang Zhang","doi":"10.1016/j.reactfunctpolym.2024.106030","DOIUrl":null,"url":null,"abstract":"<div><p>Polymer inclusion membranes (PIMs) exhibit great potential in the separation and recovery of valuable materials from wastewater and secondary resources. In this work, the effect of alkyl chain configuration of the functional carriers on the physicochemical properties and permeability of PIMs was investigated. Three tertiary amine isomers with different alkyl chain configurations were selected as carriers: trioctylamine, triisooctylamine, and tris(2-ethylhexyl)amine. Operating conditions like carrier contents, feed solution pH, phenol concentration, and stripping solution properties were also investigated. The results obtained in this study indicate that tertiary amines with less branched alkyl chains perform better phenol transport efficiency. Furthermore, the transport efficiency decreased rapidly with increasing steric hindrance of the carriers. Trioctylamine-based PIM displayed optimal extraction efficiency of 92.8 % and stripping efficiency of 90.8 % due to its lower steric hindrance, higher hydrophilicity, and larger crystallinity. Phenol extraction and stripping efficiencies remained above 85.7 % and 80.8 % after 8 cycles, demonstrating excellent stability.</p></div>","PeriodicalId":20916,"journal":{"name":"Reactive & Functional Polymers","volume":"204 ","pages":"Article 106030"},"PeriodicalIF":4.5000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reactive & Functional Polymers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1381514824002050","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Polymer inclusion membranes (PIMs) exhibit great potential in the separation and recovery of valuable materials from wastewater and secondary resources. In this work, the effect of alkyl chain configuration of the functional carriers on the physicochemical properties and permeability of PIMs was investigated. Three tertiary amine isomers with different alkyl chain configurations were selected as carriers: trioctylamine, triisooctylamine, and tris(2-ethylhexyl)amine. Operating conditions like carrier contents, feed solution pH, phenol concentration, and stripping solution properties were also investigated. The results obtained in this study indicate that tertiary amines with less branched alkyl chains perform better phenol transport efficiency. Furthermore, the transport efficiency decreased rapidly with increasing steric hindrance of the carriers. Trioctylamine-based PIM displayed optimal extraction efficiency of 92.8 % and stripping efficiency of 90.8 % due to its lower steric hindrance, higher hydrophilicity, and larger crystallinity. Phenol extraction and stripping efficiencies remained above 85.7 % and 80.8 % after 8 cycles, demonstrating excellent stability.
期刊介绍:
Reactive & Functional Polymers provides a forum to disseminate original ideas, concepts and developments in the science and technology of polymers with functional groups, which impart specific chemical reactivity or physical, chemical, structural, biological, and pharmacological functionality. The scope covers organic polymers, acting for instance as reagents, catalysts, templates, ion-exchangers, selective sorbents, chelating or antimicrobial agents, drug carriers, sensors, membranes, and hydrogels. This also includes reactive cross-linkable prepolymers and high-performance thermosetting polymers, natural or degradable polymers, conducting polymers, and porous polymers.
Original research articles must contain thorough molecular and material characterization data on synthesis of the above polymers in combination with their applications. Applications include but are not limited to catalysis, water or effluent treatment, separations and recovery, electronics and information storage, energy conversion, encapsulation, or adhesion.