{"title":"Investigating the influence of morphologic and functional polycentric structures on urban heat island: A case of Chongqing, China","authors":"","doi":"10.1016/j.scs.2024.105790","DOIUrl":null,"url":null,"abstract":"<div><p>Polycentric urban structures are widely regarded as solutions to mitigating urban heat islands (UHI). However, few studies clarified the influences of morphological and functional polycentrism on UHI. Using Chongqing as the case study, we revealed the spatial pattern of UHI based on ECOSTRESS images and morphological/functional polycentrism based on multi-source data. Then, we quantified the spatial and nonlinear effects of polycentric structures on UHI using spatial regressions and XGBoost-SHAP methods. The results showed that polycentric structures exhibit spillover and nonlinear effects on local heat variation. Building volume alleviated UHI in the urban core, signifying a substantial shadowing effect in a mountainous setting. Population density positively but weakly affected local UHI among urban centers. Facility mixture positively affected UHI mainly in facility-abundant subcenters within the effective range between 0.5 and 1.0. As a functional factor, functional linkages exerted positive effects mainly in the urban cores where the degree centrality is larger than 1,500 while exhibiting negative correlation in the peripheral subcenters, suggesting the cooling effects by dispersing functions in the urban core. These findings help mitigate UHI by targeting measures for optimizing polycentric structures.</p></div>","PeriodicalId":48659,"journal":{"name":"Sustainable Cities and Society","volume":null,"pages":null},"PeriodicalIF":10.5000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Cities and Society","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210670724006140","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Polycentric urban structures are widely regarded as solutions to mitigating urban heat islands (UHI). However, few studies clarified the influences of morphological and functional polycentrism on UHI. Using Chongqing as the case study, we revealed the spatial pattern of UHI based on ECOSTRESS images and morphological/functional polycentrism based on multi-source data. Then, we quantified the spatial and nonlinear effects of polycentric structures on UHI using spatial regressions and XGBoost-SHAP methods. The results showed that polycentric structures exhibit spillover and nonlinear effects on local heat variation. Building volume alleviated UHI in the urban core, signifying a substantial shadowing effect in a mountainous setting. Population density positively but weakly affected local UHI among urban centers. Facility mixture positively affected UHI mainly in facility-abundant subcenters within the effective range between 0.5 and 1.0. As a functional factor, functional linkages exerted positive effects mainly in the urban cores where the degree centrality is larger than 1,500 while exhibiting negative correlation in the peripheral subcenters, suggesting the cooling effects by dispersing functions in the urban core. These findings help mitigate UHI by targeting measures for optimizing polycentric structures.
期刊介绍:
Sustainable Cities and Society (SCS) is an international journal that focuses on fundamental and applied research to promote environmentally sustainable and socially resilient cities. The journal welcomes cross-cutting, multi-disciplinary research in various areas, including:
1. Smart cities and resilient environments;
2. Alternative/clean energy sources, energy distribution, distributed energy generation, and energy demand reduction/management;
3. Monitoring and improving air quality in built environment and cities (e.g., healthy built environment and air quality management);
4. Energy efficient, low/zero carbon, and green buildings/communities;
5. Climate change mitigation and adaptation in urban environments;
6. Green infrastructure and BMPs;
7. Environmental Footprint accounting and management;
8. Urban agriculture and forestry;
9. ICT, smart grid and intelligent infrastructure;
10. Urban design/planning, regulations, legislation, certification, economics, and policy;
11. Social aspects, impacts and resiliency of cities;
12. Behavior monitoring, analysis and change within urban communities;
13. Health monitoring and improvement;
14. Nexus issues related to sustainable cities and societies;
15. Smart city governance;
16. Decision Support Systems for trade-off and uncertainty analysis for improved management of cities and society;
17. Big data, machine learning, and artificial intelligence applications and case studies;
18. Critical infrastructure protection, including security, privacy, forensics, and reliability issues of cyber-physical systems.
19. Water footprint reduction and urban water distribution, harvesting, treatment, reuse and management;
20. Waste reduction and recycling;
21. Wastewater collection, treatment and recycling;
22. Smart, clean and healthy transportation systems and infrastructure;