The impact of the heat leakage through air gap on thermoelectric generator applied in engine waste heat recovery

Ning Zhang , Jiawei Wang , Yuhuai Li , Jianglin Lan , Song Lan
{"title":"The impact of the heat leakage through air gap on thermoelectric generator applied in engine waste heat recovery","authors":"Ning Zhang ,&nbsp;Jiawei Wang ,&nbsp;Yuhuai Li ,&nbsp;Jianglin Lan ,&nbsp;Song Lan","doi":"10.1016/j.gerr.2024.100088","DOIUrl":null,"url":null,"abstract":"<div><p>Efforts to enhance the performance of thermoelectric generators (TEGs) in engine waste heat recovery have primarily focused on directly increasing energy conversion efficiency. Heat leakage can occur in many parts of a TEG. It is needed to develop a model to help researchers study this phenomenon and propose measures to reduce heat leakage. To address this gap, this study establishes and validates a computational fluid dynamic (CFD) and finite element (FE) coupled model based on a TEG prototype and its engine test bench. Unlike other models, this approach captures the intricate dynamics of heat propagation from the TEG via air gaps, encompassing conduction, convection, and radiation. Comprehensive analysis reveals that heat leakage accounts for approximately 11% of TEG power output loss. Ignoring the impact of heat leakage can lead to an overestimation of TEG power output. Key areas of heat leakage are identified, and numerical factors influencing this phenomenon are explored. Vertical TEG placement and optimal spacing between thermoelectric modules emerge as effective strategies for mitigating the impact of heat leakage on power output. Leveraging these insights, strategic thermoelectric module placement, vertical TEG orientation, and the application of thermal insulation materials to the heat exchanger are proposed as measures to enhance TEG power output by approximately 5%. The experimental and numerical results underscore the feasibility of optimizing TEGs from the perspective of heat leakage, a crucial aspect previously overlooked. These findings provide valuable insights for future TEG optimization endeavors, highlighting the importance of addressing heat leakage to maximize TEG performance.</p></div>","PeriodicalId":100597,"journal":{"name":"Green Energy and Resources","volume":"2 3","pages":"Article 100088"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949720524000420/pdfft?md5=6b966c89b42e90f76ed30a97176a867d&pid=1-s2.0-S2949720524000420-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Energy and Resources","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949720524000420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Efforts to enhance the performance of thermoelectric generators (TEGs) in engine waste heat recovery have primarily focused on directly increasing energy conversion efficiency. Heat leakage can occur in many parts of a TEG. It is needed to develop a model to help researchers study this phenomenon and propose measures to reduce heat leakage. To address this gap, this study establishes and validates a computational fluid dynamic (CFD) and finite element (FE) coupled model based on a TEG prototype and its engine test bench. Unlike other models, this approach captures the intricate dynamics of heat propagation from the TEG via air gaps, encompassing conduction, convection, and radiation. Comprehensive analysis reveals that heat leakage accounts for approximately 11% of TEG power output loss. Ignoring the impact of heat leakage can lead to an overestimation of TEG power output. Key areas of heat leakage are identified, and numerical factors influencing this phenomenon are explored. Vertical TEG placement and optimal spacing between thermoelectric modules emerge as effective strategies for mitigating the impact of heat leakage on power output. Leveraging these insights, strategic thermoelectric module placement, vertical TEG orientation, and the application of thermal insulation materials to the heat exchanger are proposed as measures to enhance TEG power output by approximately 5%. The experimental and numerical results underscore the feasibility of optimizing TEGs from the perspective of heat leakage, a crucial aspect previously overlooked. These findings provide valuable insights for future TEG optimization endeavors, highlighting the importance of addressing heat leakage to maximize TEG performance.

Abstract Image

气隙漏热对应用于发动机余热回收的热电发电机的影响
在发动机余热回收方面,提高热电发电机(TEG)性能的努力主要集中在直接提高能量转换效率上。热泄漏可能发生在 TEG 的许多部位。需要开发一个模型来帮助研究人员研究这一现象,并提出减少漏热的措施。为了填补这一空白,本研究以 TEG 原型及其发动机试验台为基础,建立并验证了计算流体动力学 (CFD) 和有限元 (FE) 耦合模型。与其他模型不同的是,该方法捕捉到了 TEG 通过气隙传播热量的复杂动态,包括传导、对流和辐射。综合分析表明,热泄漏约占 TEG 功率输出损失的 11%。忽视热泄漏的影响会导致高估 TEG 功率输出。确定了热泄漏的关键区域,并探讨了影响这一现象的数值因素。垂直放置 TEG 和热电模块之间的最佳间距成为减轻热泄漏对功率输出影响的有效策略。利用这些见解,提出了战略性热电模块放置、垂直 TEG 方向以及在热交换器上应用隔热材料等措施,可将 TEG 功率输出提高约 5%。实验和数值结果强调了从热泄漏角度优化 TEG 的可行性,而这是以前被忽视的一个关键方面。这些发现为未来的 TEG 优化工作提供了宝贵的见解,强调了解决热泄漏问题以最大限度提高 TEG 性能的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信