Limit states of thin-walled composite structures with closed sections under axial compression

IF 12.7 1区 材料科学 Q1 ENGINEERING, MULTIDISCIPLINARY
{"title":"Limit states of thin-walled composite structures with closed sections under axial compression","authors":"","doi":"10.1016/j.compositesb.2024.111813","DOIUrl":null,"url":null,"abstract":"<div><p>The subjects of the study were thin-walled composite columns with closed cross sections manufactured using the autoclave technique. The composite profiles were characterized by the fact that they had a constant height and arrangement of laminate layers, however, varied cross-sectional shapes. The study was conducted using several interdisciplinary experimental research methods and advanced numerical simulations. In the course of the research, both forms of structural stability loss were registered, and damage to composite structures was assessed. In the course of the research, the influence of the shape of the cross-section on the stability and load-carrying capacity of the structure was evaluated. A measurable effect of the conducted research was the determination of the structure's post-buckling equilibrium paths, which made it possible to determine the structure's behavior in the full range of loading. In addition, the author's numerical models developed enabled validation of parallel experimental studies. The developed numerical models were based on a failure criterion known as progressive failure analysis - which allowed a thorough assessment of the failure mechanism of the composite material.</p></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":null,"pages":null},"PeriodicalIF":12.7000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1359836824006255/pdfft?md5=4b606703c80b0afa91b1ed30b3b93169&pid=1-s2.0-S1359836824006255-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836824006255","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The subjects of the study were thin-walled composite columns with closed cross sections manufactured using the autoclave technique. The composite profiles were characterized by the fact that they had a constant height and arrangement of laminate layers, however, varied cross-sectional shapes. The study was conducted using several interdisciplinary experimental research methods and advanced numerical simulations. In the course of the research, both forms of structural stability loss were registered, and damage to composite structures was assessed. In the course of the research, the influence of the shape of the cross-section on the stability and load-carrying capacity of the structure was evaluated. A measurable effect of the conducted research was the determination of the structure's post-buckling equilibrium paths, which made it possible to determine the structure's behavior in the full range of loading. In addition, the author's numerical models developed enabled validation of parallel experimental studies. The developed numerical models were based on a failure criterion known as progressive failure analysis - which allowed a thorough assessment of the failure mechanism of the composite material.

轴向压缩下封闭截面薄壁复合结构的极限状态
研究对象是采用高压釜技术制造的具有封闭截面的薄壁复合材料柱。这些复合材料型材的特点是,它们的高度和层压板的排列不变,但横截面形状各异。研究采用了多种跨学科实验研究方法和先进的数值模拟。在研究过程中,对两种形式的结构稳定性损失进行了记录,并对复合材料结构的损坏情况进行了评估。在研究过程中,还评估了横截面形状对结构稳定性和承载能力的影响。研究的一个显著效果是确定了结构的屈曲后平衡轨迹,从而可以确定结构在全部荷载范围内的行为。此外,作者开发的数值模型还为平行实验研究提供了验证。所开发的数值模型基于一种称为渐进失效分析的失效标准,可对复合材料的失效机制进行全面评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Composites Part B: Engineering
Composites Part B: Engineering 工程技术-材料科学:复合
CiteScore
24.40
自引率
11.50%
发文量
784
审稿时长
21 days
期刊介绍: Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development. The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信