{"title":"CRML-Net: Cross-Modal Reasoning and Multi-Task Learning Network for tooth image segmentation","authors":"","doi":"10.1016/j.cviu.2024.104138","DOIUrl":null,"url":null,"abstract":"<div><p>Data from a single modality may suffer from noise, low contrast, or other imaging limitations that affect the model’s accuracy. Furthermore, due to the limited amount of data, most models trained on single-modality data tend to overfit the training set and perform poorly on out-of-domain data. Therefore, in this paper, we propose a network named Cross-Modal Reasoning and Multi-Task Learning Network (CRML-Net), which combines cross-modal reasoning and multi-task learning, aiming to leverage the complementary information between different modalities and tasks to enhance the model’s generalization ability and accuracy. Specifically, CRML-Net consists of two stages. In the first stage, our network extracts a new morphological information modality from the original image and then performs cross-modal fusion with the original modality image, aiming to leverage the morphological information to enhance the model’s robustness to out-of-domain datasets. In the second stage, based on the output of the previous stage, we introduce a multi-task learning mechanism, aiming to improve the model’s performance on unseen data by sharing surface detail information from auxiliary tasks. We validated our method on a publicly available tooth cone beam computed tomography dataset. Our evaluation demonstrates that our method outperforms state-of-the-art approaches.</p></div>","PeriodicalId":50633,"journal":{"name":"Computer Vision and Image Understanding","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision and Image Understanding","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077314224002194","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Data from a single modality may suffer from noise, low contrast, or other imaging limitations that affect the model’s accuracy. Furthermore, due to the limited amount of data, most models trained on single-modality data tend to overfit the training set and perform poorly on out-of-domain data. Therefore, in this paper, we propose a network named Cross-Modal Reasoning and Multi-Task Learning Network (CRML-Net), which combines cross-modal reasoning and multi-task learning, aiming to leverage the complementary information between different modalities and tasks to enhance the model’s generalization ability and accuracy. Specifically, CRML-Net consists of two stages. In the first stage, our network extracts a new morphological information modality from the original image and then performs cross-modal fusion with the original modality image, aiming to leverage the morphological information to enhance the model’s robustness to out-of-domain datasets. In the second stage, based on the output of the previous stage, we introduce a multi-task learning mechanism, aiming to improve the model’s performance on unseen data by sharing surface detail information from auxiliary tasks. We validated our method on a publicly available tooth cone beam computed tomography dataset. Our evaluation demonstrates that our method outperforms state-of-the-art approaches.
期刊介绍:
The central focus of this journal is the computer analysis of pictorial information. Computer Vision and Image Understanding publishes papers covering all aspects of image analysis from the low-level, iconic processes of early vision to the high-level, symbolic processes of recognition and interpretation. A wide range of topics in the image understanding area is covered, including papers offering insights that differ from predominant views.
Research Areas Include:
• Theory
• Early vision
• Data structures and representations
• Shape
• Range
• Motion
• Matching and recognition
• Architecture and languages
• Vision systems