A Markov cohort model for Endoscopic surveillance and management of Barrett’s esophagus

Ravi Vissapragada , Norma B. Bulamu , Roger Yazbeck , Jonathan Karnon , David I. Watson
{"title":"A Markov cohort model for Endoscopic surveillance and management of Barrett’s esophagus","authors":"Ravi Vissapragada ,&nbsp;Norma B. Bulamu ,&nbsp;Roger Yazbeck ,&nbsp;Jonathan Karnon ,&nbsp;David I. Watson","doi":"10.1016/j.health.2024.100360","DOIUrl":null,"url":null,"abstract":"<div><p>Barrett's esophagus is an asymptomatic precursor to esophageal adenocarcinoma. Its rising incidence due to lifestyle factors, coupled with healthcare costs, requires cost-effective alternatives for surveillance. We propose a decision-analytic Markov cohort model to simulate Barrett's esophagus's natural progression to esophageal adenocarcinoma using TreeAge Pro. Health states include metaplasia (non-dysplastic Barrett's esophagus), low-grade dysplasia, high-grade dysplasia, and esophageal adenocarcinoma. Triplicates of these health states represent one non-stratified and two risk-stratified cohorts for devising risk-based strategies. A cycle length of six months and a time horizon of 35 years, totaling 70 cycles, is considered. Model inputs are derived from literature and, when unavailable from an extensive local database of 1087 patients (5081 person-years) from March 2003–2021, cleaned and analyzed with Rstudio (R version 3.6.3). Specific tests included descriptive statistics, Cox-proportional hazard models, and graphing. A seven-step calibration process is performed for risk-stratified and non-stratified groups simultaneously to match the progression to high-grade dysplasia and esophageal adenocarcinoma. This allows comparison between risk- and non-risk-based strategies. The calibration process included input parameterization, optimization, goodness of fit calculation, selection of sets meeting convergence criteria, and integration into probabilistic sensitivity analysis. This process generated 10,187 sets of transition probabilities, with 4358 meeting convergence criteria, ensuring equal model outputs in all groups. Mortality was 10.7% for cancer-related deaths, matching literature values. This process provides a robust framework for evaluating Barrett's esophagus progression and management strategies, supporting informed decision-making in healthcare.</p></div>","PeriodicalId":73222,"journal":{"name":"Healthcare analytics (New York, N.Y.)","volume":"6 ","pages":"Article 100360"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772442524000625/pdfft?md5=39571667386e7018b829933792fd6ca7&pid=1-s2.0-S2772442524000625-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare analytics (New York, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772442524000625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Barrett's esophagus is an asymptomatic precursor to esophageal adenocarcinoma. Its rising incidence due to lifestyle factors, coupled with healthcare costs, requires cost-effective alternatives for surveillance. We propose a decision-analytic Markov cohort model to simulate Barrett's esophagus's natural progression to esophageal adenocarcinoma using TreeAge Pro. Health states include metaplasia (non-dysplastic Barrett's esophagus), low-grade dysplasia, high-grade dysplasia, and esophageal adenocarcinoma. Triplicates of these health states represent one non-stratified and two risk-stratified cohorts for devising risk-based strategies. A cycle length of six months and a time horizon of 35 years, totaling 70 cycles, is considered. Model inputs are derived from literature and, when unavailable from an extensive local database of 1087 patients (5081 person-years) from March 2003–2021, cleaned and analyzed with Rstudio (R version 3.6.3). Specific tests included descriptive statistics, Cox-proportional hazard models, and graphing. A seven-step calibration process is performed for risk-stratified and non-stratified groups simultaneously to match the progression to high-grade dysplasia and esophageal adenocarcinoma. This allows comparison between risk- and non-risk-based strategies. The calibration process included input parameterization, optimization, goodness of fit calculation, selection of sets meeting convergence criteria, and integration into probabilistic sensitivity analysis. This process generated 10,187 sets of transition probabilities, with 4358 meeting convergence criteria, ensuring equal model outputs in all groups. Mortality was 10.7% for cancer-related deaths, matching literature values. This process provides a robust framework for evaluating Barrett's esophagus progression and management strategies, supporting informed decision-making in healthcare.

内镜监测和管理巴雷特食管的马尔科夫队列模型
巴雷特食管是食管腺癌的无症状前兆。由于生活方式和医疗成本等因素,其发病率不断上升,因此需要成本效益高的替代监测方法。我们提出了一个决策分析马尔可夫队列模型,利用 TreeAge Pro 模拟巴雷特食管向食管腺癌的自然发展过程。健康状态包括化生期(非增生不良的巴雷特食管)、低度增生不良、高度增生不良和食管腺癌。这些健康状况的三倍代表一个非分层组群和两个风险分层组群,用于制定基于风险的策略。考虑的周期长度为 6 个月,时间跨度为 35 年,共计 70 个周期。模型输入数据来源于文献,如无法获得,则来源于 2003 年 3 月至 2021 年间 1087 名患者(5081 人-年)的庞大本地数据库,并使用 Rstudio(R 3.6.3 版)进行了清理和分析。具体测试包括描述性统计、Cox 比例危险模型和绘图。对风险分层组和非分层组同时进行七步校准,以匹配向高级别发育不良和食管腺癌的进展。这样就可以对基于风险和非基于风险的策略进行比较。校准过程包括输入参数化、优化、拟合优度计算、选择符合收敛标准的集合,以及整合到概率敏感性分析中。这一过程产生了 10187 组过渡概率,其中 4358 组符合收敛标准,确保了所有组的模型输出结果相同。癌症相关死亡的死亡率为 10.7%,与文献值相符。这一过程为评估巴雷特食管的进展和管理策略提供了一个稳健的框架,为医疗保健领域的知情决策提供了支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Healthcare analytics (New York, N.Y.)
Healthcare analytics (New York, N.Y.) Applied Mathematics, Modelling and Simulation, Nursing and Health Professions (General)
CiteScore
4.40
自引率
0.00%
发文量
0
审稿时长
79 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信