Time series processing-based malicious activity detection in SCADA systems

IF 6 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Michael Zaslavski, Meir Kalech
{"title":"Time series processing-based malicious activity detection in SCADA systems","authors":"Michael Zaslavski,&nbsp;Meir Kalech","doi":"10.1016/j.iot.2024.101355","DOIUrl":null,"url":null,"abstract":"<div><p>Many critical infrastructures, essential to modern life, such as oil and gas pipeline control and electricity distribution, are managed by SCADA systems. In the contemporary landscape, these systems are interconnected to the internet, rendering them vulnerable to numerous cyber-attacks. Consequently, ensuring SCADA security has become a crucial area of research. This paper focuses on detecting attacks that manipulate the timing of commands within the system, while maintaining their original order and content. To address this challenge, we propose several machine-learning-based methods. The first approach relies on Long-Short-Term Memory model, and the second utilizes Hierarchical Temporal Memory model, both renowned for their effectiveness in detecting patterns in time-series data. We rigorously evaluate our methods using a real-life SCADA system dataset and show that they outperform previous techniques designed to combat such attacks.</p></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":"28 ","pages":"Article 101355"},"PeriodicalIF":6.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542660524002968","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Many critical infrastructures, essential to modern life, such as oil and gas pipeline control and electricity distribution, are managed by SCADA systems. In the contemporary landscape, these systems are interconnected to the internet, rendering them vulnerable to numerous cyber-attacks. Consequently, ensuring SCADA security has become a crucial area of research. This paper focuses on detecting attacks that manipulate the timing of commands within the system, while maintaining their original order and content. To address this challenge, we propose several machine-learning-based methods. The first approach relies on Long-Short-Term Memory model, and the second utilizes Hierarchical Temporal Memory model, both renowned for their effectiveness in detecting patterns in time-series data. We rigorously evaluate our methods using a real-life SCADA system dataset and show that they outperform previous techniques designed to combat such attacks.

基于时间序列处理的 SCADA 系统恶意活动检测
许多对现代生活至关重要的关键基础设施,如油气管道控制和电力分配,都由 SCADA 系统管理。在现代社会中,这些系统与互联网相互连接,因此很容易受到各种网络攻击。因此,确保 SCADA 安全已成为一个重要的研究领域。本文的重点是检测在保持原有顺序和内容的情况下,操纵系统内命令的时间的攻击。为应对这一挑战,我们提出了几种基于机器学习的方法。第一种方法依赖于长短期记忆模型,第二种方法利用分层时态记忆模型,这两种方法都因其在检测时间序列数据模式方面的有效性而闻名。我们使用一个真实的 SCADA 系统数据集对我们的方法进行了严格评估,结果表明这些方法优于以前为应对此类攻击而设计的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Internet of Things
Internet of Things Multiple-
CiteScore
3.60
自引率
5.10%
发文量
115
审稿时长
37 days
期刊介绍: Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT. The journal will place a high priority on timely publication, and provide a home for high quality. Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信