Tao Sun, Sahil Kalia, Benjamin M. Wyman, Keith J. Ou, Xin Gen Lei
{"title":"Impacts of feeding three strains of microalgae alone or in combination on growth performance, protein metabolism, and meat quality of broiler chickens","authors":"Tao Sun, Sahil Kalia, Benjamin M. Wyman, Keith J. Ou, Xin Gen Lei","doi":"10.1016/j.algal.2024.103691","DOIUrl":null,"url":null,"abstract":"<div><p>Variations in nutrient compositions, especially amino acid (AA) profiles, among microalgal species may enable a superior feeding outcome from a combined than singular supplementation in poultry diets. Therefore, a feeding trial was conducted to compare the effects of three strains of microalgal biomass supplemented alone or in combination to replace 5 % (starter) and 10 % (grower) soybean meal (on weight-to-weight basis) on growth performance, protein metabolism, and meat quality of broiler chickens. Day-old Cornish Cross male chicks (total = 180) were divided into 5 groups (6 cages/treatment, 6 birds/cage) and fed a corn-soybean meal basal diet (BD), BD + H117 (<em>Chlorella</em> sp., H117), BD + C985 (<em>Tetraselmis</em> sp., C985), BD + <em>Nannochloropsis oceanica</em> (NO), and BD + H117 + C985 + NO (Combination). Feeding any of the microalgae diets did not alter growth performance nor meat quality including texture, pH, color, and water holding capacity of breast and thigh meats. However, the breast weight percentages were decreased (<em>P</em> < 0.05) by feeding the C985, NO, and Combination diets. Compared with the BD, the 4 microalgal diets led to higher (<em>P</em> < 0.05) plasma uric acid and protein concentrations at weeks 3 and (or) 6. The mRNA levels of <em>MAFbx</em>, <em>MURF1</em>, <em>FOXO1</em>, and <em>calpastatin</em> in the breast and thigh muscles were altered by the microalgal diets but not those of genes associated with other quality traits. In conclusion, replacing 5 % or 10 % soybean meal with three sources of microalgae in broiler diets decreased breast weights percentage but not absolute weight. Feeding chickens with the combination of three microalgae did not restore the breast loss and induced different expressions of genes related to muscle hypertrophy or atrophy.</p></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":"83 ","pages":"Article 103691"},"PeriodicalIF":4.6000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algal Research-Biomass Biofuels and Bioproducts","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211926424003035","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Variations in nutrient compositions, especially amino acid (AA) profiles, among microalgal species may enable a superior feeding outcome from a combined than singular supplementation in poultry diets. Therefore, a feeding trial was conducted to compare the effects of three strains of microalgal biomass supplemented alone or in combination to replace 5 % (starter) and 10 % (grower) soybean meal (on weight-to-weight basis) on growth performance, protein metabolism, and meat quality of broiler chickens. Day-old Cornish Cross male chicks (total = 180) were divided into 5 groups (6 cages/treatment, 6 birds/cage) and fed a corn-soybean meal basal diet (BD), BD + H117 (Chlorella sp., H117), BD + C985 (Tetraselmis sp., C985), BD + Nannochloropsis oceanica (NO), and BD + H117 + C985 + NO (Combination). Feeding any of the microalgae diets did not alter growth performance nor meat quality including texture, pH, color, and water holding capacity of breast and thigh meats. However, the breast weight percentages were decreased (P < 0.05) by feeding the C985, NO, and Combination diets. Compared with the BD, the 4 microalgal diets led to higher (P < 0.05) plasma uric acid and protein concentrations at weeks 3 and (or) 6. The mRNA levels of MAFbx, MURF1, FOXO1, and calpastatin in the breast and thigh muscles were altered by the microalgal diets but not those of genes associated with other quality traits. In conclusion, replacing 5 % or 10 % soybean meal with three sources of microalgae in broiler diets decreased breast weights percentage but not absolute weight. Feeding chickens with the combination of three microalgae did not restore the breast loss and induced different expressions of genes related to muscle hypertrophy or atrophy.
期刊介绍:
Algal Research is an international phycology journal covering all areas of emerging technologies in algae biology, biomass production, cultivation, harvesting, extraction, bioproducts, biorefinery, engineering, and econometrics. Algae is defined to include cyanobacteria, microalgae, and protists and symbionts of interest in biotechnology. The journal publishes original research and reviews for the following scope: algal biology, including but not exclusive to: phylogeny, biodiversity, molecular traits, metabolic regulation, and genetic engineering, algal cultivation, e.g. phototrophic systems, heterotrophic systems, and mixotrophic systems, algal harvesting and extraction systems, biotechnology to convert algal biomass and components into biofuels and bioproducts, e.g., nutraceuticals, pharmaceuticals, animal feed, plastics, etc. algal products and their economic assessment