Predicting the impact of retinal vessel density on retinal vessel and tissue oxygenation using a theoretical model

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Brendan C. Fry , Croix Gyurek , Amanda Albright , George Eckert , Janet Coleman-Belin , Alice Verticchio , Brent Siesky , Alon Harris , Julia Arciero
{"title":"Predicting the impact of retinal vessel density on retinal vessel and tissue oxygenation using a theoretical model","authors":"Brendan C. Fry ,&nbsp;Croix Gyurek ,&nbsp;Amanda Albright ,&nbsp;George Eckert ,&nbsp;Janet Coleman-Belin ,&nbsp;Alice Verticchio ,&nbsp;Brent Siesky ,&nbsp;Alon Harris ,&nbsp;Julia Arciero","doi":"10.1016/j.mbs.2024.109292","DOIUrl":null,"url":null,"abstract":"<div><div>Vascular impairments, including compromised flow regulation, have been identified as significant contributors to glaucomatous disease. Recent studies have shown glaucoma patients with significantly reduced peripapillary, macular, and optic nerve head vessel densities occurring with early glaucomatous structural changes prior to detectable visual field loss. This study aims to quantify the potential impact of decreased vessel densities on retinal perfusion and oxygen metabolism. In our clinical observations, pre-perimetric glaucoma patients exhibited a 10–13 % reduction in vessel density compared to healthy individuals. Our theoretical model of the retinal vasculature is adapted in this study to assess the potential impact of this reduction in vessel density on retinal oxygenation. The model predicts a 1 % and 38 % decrease in mean oxygen saturation in retinal vessels immediately downstream of the capillaries when vessel density is decreased from its reference value by 10 % and 50 %, respectively. The impact of capillary loss on oxygen extraction fraction and the partial pressure of oxygen in retinal tissue is also predicted. Reductions in vessel density are simulated in combination with impaired flow regulation, and the resulting effects on saturation and flow are predicted. The model results showed a nonlinear relationship between vessel density and downstream saturation, indicating that larger decreases in the density of capillaries have a disproportionate impact on oxygenation. The model further demonstrates that the detrimental effects of minor vessel density reductions are exacerbated when combined with other vascular impairments.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025556424001524","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Vascular impairments, including compromised flow regulation, have been identified as significant contributors to glaucomatous disease. Recent studies have shown glaucoma patients with significantly reduced peripapillary, macular, and optic nerve head vessel densities occurring with early glaucomatous structural changes prior to detectable visual field loss. This study aims to quantify the potential impact of decreased vessel densities on retinal perfusion and oxygen metabolism. In our clinical observations, pre-perimetric glaucoma patients exhibited a 10–13 % reduction in vessel density compared to healthy individuals. Our theoretical model of the retinal vasculature is adapted in this study to assess the potential impact of this reduction in vessel density on retinal oxygenation. The model predicts a 1 % and 38 % decrease in mean oxygen saturation in retinal vessels immediately downstream of the capillaries when vessel density is decreased from its reference value by 10 % and 50 %, respectively. The impact of capillary loss on oxygen extraction fraction and the partial pressure of oxygen in retinal tissue is also predicted. Reductions in vessel density are simulated in combination with impaired flow regulation, and the resulting effects on saturation and flow are predicted. The model results showed a nonlinear relationship between vessel density and downstream saturation, indicating that larger decreases in the density of capillaries have a disproportionate impact on oxygenation. The model further demonstrates that the detrimental effects of minor vessel density reductions are exacerbated when combined with other vascular impairments.
利用理论模型预测视网膜血管密度对视网膜血管和组织氧合的影响。
血管损伤,包括血流调节功能受损,已被确认为青光眼疾病的重要诱因。最近的研究表明,青光眼患者的虹膜周围、黄斑和视神经头血管密度明显降低,并在可检测到的视野缺损之前出现早期青光眼结构变化。本研究旨在量化血管密度降低对视网膜灌注和氧代谢的潜在影响。根据我们的临床观察,与健康人相比,青光眼前期患者的血管密度降低了 10%-13%。本研究对我们的视网膜血管理论模型进行了调整,以评估血管密度降低对视网膜氧合的潜在影响。该模型预测,当血管密度从参考值降低 10%和 50%时,紧靠毛细血管下游的视网膜血管的平均血氧饱和度将分别降低 1%和 38%。此外,还预测了毛细血管损失对视网膜组织中氧萃取率和氧分压的影响。模型模拟了血管密度降低与血流调节受损相结合的情况,并预测了由此对饱和度和血流产生的影响。模型结果显示,血管密度与下游饱和度之间存在非线性关系,表明毛细血管密度的大幅下降会对氧饱和度产生不成比例的影响。该模型还进一步证明,当血管出现其他损伤时,轻微的血管密度降低会加剧其不利影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信