Pyrolysis-induced migration and transformation of heavy metals in sewage sludge containing microplastics

IF 7.1 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Xinyi Chang , Pengfei Wu , Yaozhu Chu , Ying Zhou , Yuanyuan Tang
{"title":"Pyrolysis-induced migration and transformation of heavy metals in sewage sludge containing microplastics","authors":"Xinyi Chang ,&nbsp;Pengfei Wu ,&nbsp;Yaozhu Chu ,&nbsp;Ying Zhou ,&nbsp;Yuanyuan Tang","doi":"10.1016/j.wasman.2024.08.039","DOIUrl":null,"url":null,"abstract":"<div><p>Stabilizing heavy metals (HMs) in sewage sludge is urgently needed to facilitate its recycling and reuse. Pyrolysis stands out as a promising method for not only stabilizing these metals but also producing biochar. Our research delves into the migration and transformation of specific HMs (Cr, Mn, Ni, Cu, Zn, As, and Pb) during co-pyrolysis under various conditions, including the presence and absence of microplastics (PVC and PET). We examined different concentrations of these plastics (1 %, 5 %, 10 %, and 15 %) and temperatures (300 °C, 500 °C, and 700 °C). Findings reveal that microplastics, particularly PVC, enhance the migration of Zn and Mn, leading to significant volatilization of Zn and Pb at higher temperatures, peaking at 700 °C. The increase in temperature also markedly influences HM migration, with As showcasing notable loss rates that climbed by 18.0 % and 16.3 % in systems with PET and PVC, respectively, as temperatures soared from 300 °C to 700 °C. Moreover, our speciation analysis indicates that microplastics aid in transforming certain HMs from unstable to more stable forms, suggesting their beneficial role in HM stabilization during pyrolysis. This study significantly enriches our understanding of microplastics’ impact on HM behavior in sewage sludge pyrolysis, offering new avenues for pollution control and environmental management strategies.</p></div>","PeriodicalId":23969,"journal":{"name":"Waste management","volume":"189 ","pages":"Pages 401-409"},"PeriodicalIF":7.1000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956053X24004732","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Stabilizing heavy metals (HMs) in sewage sludge is urgently needed to facilitate its recycling and reuse. Pyrolysis stands out as a promising method for not only stabilizing these metals but also producing biochar. Our research delves into the migration and transformation of specific HMs (Cr, Mn, Ni, Cu, Zn, As, and Pb) during co-pyrolysis under various conditions, including the presence and absence of microplastics (PVC and PET). We examined different concentrations of these plastics (1 %, 5 %, 10 %, and 15 %) and temperatures (300 °C, 500 °C, and 700 °C). Findings reveal that microplastics, particularly PVC, enhance the migration of Zn and Mn, leading to significant volatilization of Zn and Pb at higher temperatures, peaking at 700 °C. The increase in temperature also markedly influences HM migration, with As showcasing notable loss rates that climbed by 18.0 % and 16.3 % in systems with PET and PVC, respectively, as temperatures soared from 300 °C to 700 °C. Moreover, our speciation analysis indicates that microplastics aid in transforming certain HMs from unstable to more stable forms, suggesting their beneficial role in HM stabilization during pyrolysis. This study significantly enriches our understanding of microplastics’ impact on HM behavior in sewage sludge pyrolysis, offering new avenues for pollution control and environmental management strategies.

Abstract Image

热解诱导含有微塑料的污水污泥中重金属的迁移和转化。
迫切需要稳定污水污泥中的重金属 (HMs),以促进污泥的回收和再利用。热解是一种很有前景的方法,不仅能稳定这些金属,还能生产生物炭。我们的研究深入探讨了特定 HMs(铬、锰、镍、铜、锌、砷和铅)在不同条件下(包括存在和不存在微塑料(PVC 和 PET))的协同热解过程中的迁移和转化。我们研究了这些塑料的不同浓度(1%、5%、10% 和 15%)和温度(300 °C、500 °C 和 700 °C)。研究结果表明,微塑料(尤其是聚氯乙烯)会增强锌和锰的迁移,导致锌和铅在较高温度下大量挥发,在 700 °C 时达到峰值。温度的升高也会明显影响 HM 的迁移,在含有 PET 和 PVC 的系统中,当温度从 300 °C 上升到 700 °C 时,As 的损失率分别上升了 18.0% 和 16.3%。此外,我们的标样分析表明,微塑料有助于将某些 HMs 从不稳定形式转化为更稳定的形式,这表明它们在热解过程中对 HMs 的稳定起到了有益的作用。这项研究极大地丰富了我们对微塑料在污水污泥热解过程中对 HM 行为的影响的理解,为污染控制和环境管理策略提供了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Waste management
Waste management 环境科学-工程:环境
CiteScore
15.60
自引率
6.20%
发文量
492
审稿时长
39 days
期刊介绍: Waste Management is devoted to the presentation and discussion of information on solid wastes,it covers the entire lifecycle of solid. wastes. Scope: Addresses solid wastes in both industrialized and economically developing countries Covers various types of solid wastes, including: Municipal (e.g., residential, institutional, commercial, light industrial) Agricultural Special (e.g., C and D, healthcare, household hazardous wastes, sewage sludge)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信