Effect of ion-specific water structures at metal surfaces on hydrogen production.

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Ye Tian, Botao Huang, Yizhi Song, Yirui Zhang, Dong Guan, Jiani Hong, Duanyun Cao, Enge Wang, Limei Xu, Yang Shao-Horn, Ying Jiang
{"title":"Effect of ion-specific water structures at metal surfaces on hydrogen production.","authors":"Ye Tian, Botao Huang, Yizhi Song, Yirui Zhang, Dong Guan, Jiani Hong, Duanyun Cao, Enge Wang, Limei Xu, Yang Shao-Horn, Ying Jiang","doi":"10.1038/s41467-024-52131-w","DOIUrl":null,"url":null,"abstract":"<p><p>Water structures at electrolyte/electrode interfaces play a crucial role in determining the selectivity and kinetics of electrochemical reactions. Despite extensive experimental and theoretical efforts, atomic-level details of ion-specific water structures on metal surfaces remain unclear. Here we show, using scanning tunneling microscopy and noncontact atomic force microscopy, that we can visualize water layers containing alkali metal cations on a charged Au(111) surface with atomic resolution. Our results reveal that Li<sup>+</sup> cations are elevated from the surface, facilitating the formation of an ice-like water layer between the Li<sup>+</sup> cations and the surface. In contrast, K<sup>+</sup> and Cs<sup>+</sup> cations are in direct contact with the surface. We observe that the water network structure transitions from a hexagonal arrangement with Li<sup>+</sup> to a distorted hydrogen-bonding configuration with Cs<sup>+</sup>. These observations are consistent with surface-enhanced infrared absorption spectroscopy data and suggest that alkali metal cations significantly impact hydrogen evolution reaction kinetics and efficiency. Our findings provide insights into ion-specific water structures on metal surfaces and underscore the critical role of spectator ions in electrochemical processes.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11380671/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-52131-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Water structures at electrolyte/electrode interfaces play a crucial role in determining the selectivity and kinetics of electrochemical reactions. Despite extensive experimental and theoretical efforts, atomic-level details of ion-specific water structures on metal surfaces remain unclear. Here we show, using scanning tunneling microscopy and noncontact atomic force microscopy, that we can visualize water layers containing alkali metal cations on a charged Au(111) surface with atomic resolution. Our results reveal that Li+ cations are elevated from the surface, facilitating the formation of an ice-like water layer between the Li+ cations and the surface. In contrast, K+ and Cs+ cations are in direct contact with the surface. We observe that the water network structure transitions from a hexagonal arrangement with Li+ to a distorted hydrogen-bonding configuration with Cs+. These observations are consistent with surface-enhanced infrared absorption spectroscopy data and suggest that alkali metal cations significantly impact hydrogen evolution reaction kinetics and efficiency. Our findings provide insights into ion-specific water structures on metal surfaces and underscore the critical role of spectator ions in electrochemical processes.

Abstract Image

金属表面离子特异性水结构对制氢的影响。
电解质/电极界面上的水结构在决定电化学反应的选择性和动力学方面起着至关重要的作用。尽管进行了大量的实验和理论研究,但金属表面离子特异性水结构的原子级细节仍不清楚。在这里,我们利用扫描隧道显微镜和非接触原子力显微镜,以原子分辨率展示了带电 Au(111)表面上含有碱金属阳离子的水层。我们的研究结果表明,Li+ 阳离子从表面升高,促进了 Li+ 阳离子与表面之间冰状水层的形成。相反,K+ 和 Cs+ 阳离子与表面直接接触。我们观察到,水网络结构从 Li+ 的六角形排列转变为 Cs+ 的扭曲氢键构型。这些观察结果与表面增强红外吸收光谱数据一致,并表明碱金属阳离子对氢进化反应动力学和效率有显著影响。我们的研究结果提供了有关金属表面离子特异性水结构的见解,并强调了旁观离子在电化学过程中的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信