Patrick Rodrigues , Lucas B.R. Orssatto , Anne Hecksteden , Gabriel S. Trajano , Geoffrey M. Minett
{"title":"One size does not fit all: Methodological considerations and recommended solutions for intramuscular temperature assessment","authors":"Patrick Rodrigues , Lucas B.R. Orssatto , Anne Hecksteden , Gabriel S. Trajano , Geoffrey M. Minett","doi":"10.1016/j.jtherbio.2024.103925","DOIUrl":null,"url":null,"abstract":"<div><p>Intramuscular temperature kinetics can provide insightful information for exercise and environmental physiology research. However, currently, there are no consistent method descriptions or guidelines for muscle temperature assessment in the literature. Studies have reported a great variation in muscle temperature assessment, from 1.5 cm under the skin to 4 cm under the muscle fascia. Moreover, a large variation in body composition components among participants exacerbates this issue, changing the depth and the muscle to be tested. For instance, in young adults (25 ± 5 yrs), the thigh subcutaneous fat thickness can vary from 0.11 to 1.69 cm, and vastus lateralis thickness from 1.62 to 3.38 cm; in older adults (68.5 ± 3 yrs), subcutaneous fat thickness plus gastrocnemius medialis thickness can vary from 1.03 to 3.22 cm. This variation results in inconsistent resting muscle temperature profiles and muscle temperature kinetics during and after an exercise or environmental thermal stress interventions (hot or cold). Hence, one fixed size does not fit all. Standardization and consistency in muscle temperature assessment procedures across studies are required to allow a better understanding and translation of the influence of a given stressor (exercise or thermal) on muscle temperature kinetics. This methodological manuscript i) summarizes the differences in muscle temperature assessment procedures and techniques used across different studies, ii) discusses current concerns related to variations in intramuscular needle depth, and subcutaneous fat and muscle thickness when assessing muscle temperature, and iii) suggests a systematic and more robust approach, based on individual body composition characteristics, to be considered when assessing intramuscular temperature.</p></div>","PeriodicalId":17428,"journal":{"name":"Journal of thermal biology","volume":"124 ","pages":"Article 103925"},"PeriodicalIF":2.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0306456524001438/pdfft?md5=b892b7881d1981dc48ef280155846521&pid=1-s2.0-S0306456524001438-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of thermal biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306456524001438","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Intramuscular temperature kinetics can provide insightful information for exercise and environmental physiology research. However, currently, there are no consistent method descriptions or guidelines for muscle temperature assessment in the literature. Studies have reported a great variation in muscle temperature assessment, from 1.5 cm under the skin to 4 cm under the muscle fascia. Moreover, a large variation in body composition components among participants exacerbates this issue, changing the depth and the muscle to be tested. For instance, in young adults (25 ± 5 yrs), the thigh subcutaneous fat thickness can vary from 0.11 to 1.69 cm, and vastus lateralis thickness from 1.62 to 3.38 cm; in older adults (68.5 ± 3 yrs), subcutaneous fat thickness plus gastrocnemius medialis thickness can vary from 1.03 to 3.22 cm. This variation results in inconsistent resting muscle temperature profiles and muscle temperature kinetics during and after an exercise or environmental thermal stress interventions (hot or cold). Hence, one fixed size does not fit all. Standardization and consistency in muscle temperature assessment procedures across studies are required to allow a better understanding and translation of the influence of a given stressor (exercise or thermal) on muscle temperature kinetics. This methodological manuscript i) summarizes the differences in muscle temperature assessment procedures and techniques used across different studies, ii) discusses current concerns related to variations in intramuscular needle depth, and subcutaneous fat and muscle thickness when assessing muscle temperature, and iii) suggests a systematic and more robust approach, based on individual body composition characteristics, to be considered when assessing intramuscular temperature.
期刊介绍:
The Journal of Thermal Biology publishes articles that advance our knowledge on the ways and mechanisms through which temperature affects man and animals. This includes studies of their responses to these effects and on the ecological consequences. Directly relevant to this theme are:
• The mechanisms of thermal limitation, heat and cold injury, and the resistance of organisms to extremes of temperature
• The mechanisms involved in acclimation, acclimatization and evolutionary adaptation to temperature
• Mechanisms underlying the patterns of hibernation, torpor, dormancy, aestivation and diapause
• Effects of temperature on reproduction and development, growth, ageing and life-span
• Studies on modelling heat transfer between organisms and their environment
• The contributions of temperature to effects of climate change on animal species and man
• Studies of conservation biology and physiology related to temperature
• Behavioural and physiological regulation of body temperature including its pathophysiology and fever
• Medical applications of hypo- and hyperthermia
Article types:
• Original articles
• Review articles