Flexible solid-liquid bi-continuous electrically and thermally conductive nanocomposite for electromagnetic interference shielding and heat dissipation
Yue Sun, Yunting Su, Ziyuan Chai, Lei Jiang, Liping Heng
{"title":"Flexible solid-liquid bi-continuous electrically and thermally conductive nanocomposite for electromagnetic interference shielding and heat dissipation","authors":"Yue Sun, Yunting Su, Ziyuan Chai, Lei Jiang, Liping Heng","doi":"10.1038/s41467-024-51732-9","DOIUrl":null,"url":null,"abstract":"<p>In the era of 5 G, the rise in power density in miniaturized, flexible electronic devices has created an urgent need for thin, flexible, polymer-based electrically and thermally conductive nanocomposites to address challenges related to electromagnetic interference (EMI) and heat accumulation. However, the difficulties in establishing enduring and continuous transfer pathways for electrons and phonons using solid-rigid conductive fillers within insulative polymer matrices limit the development of such nanocomposites. Herein, we incorporate MXene-bridging-liquid metal (MBLM) solid-liquid bi-continuous electrical-thermal conductive networks within aramid nanofiber/polyvinyl alcohol (AP) matrices, resulting in the AP/MBLM nanocomposite with ultra-high electrical conductivity (3984 S/cm) and distinguished thermal conductivity of 13.17 W m<sup>−1</sup> K<sup>−1</sup>. This nanocomposite exhibits excellent EMI shielding efficiency (<i>SE</i>) of 74.6 dB at a minimal thickness of 22 μm, and maintains high EMI shielding stability after enduring various harsh conditions. Meanwhile, the AP/MBLM nanocomposite also demonstrates promising heat dissipation behavior. This work expands the concept of creating thin films with high electrical and thermal conductivity.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"66 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-51732-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In the era of 5 G, the rise in power density in miniaturized, flexible electronic devices has created an urgent need for thin, flexible, polymer-based electrically and thermally conductive nanocomposites to address challenges related to electromagnetic interference (EMI) and heat accumulation. However, the difficulties in establishing enduring and continuous transfer pathways for electrons and phonons using solid-rigid conductive fillers within insulative polymer matrices limit the development of such nanocomposites. Herein, we incorporate MXene-bridging-liquid metal (MBLM) solid-liquid bi-continuous electrical-thermal conductive networks within aramid nanofiber/polyvinyl alcohol (AP) matrices, resulting in the AP/MBLM nanocomposite with ultra-high electrical conductivity (3984 S/cm) and distinguished thermal conductivity of 13.17 W m−1 K−1. This nanocomposite exhibits excellent EMI shielding efficiency (SE) of 74.6 dB at a minimal thickness of 22 μm, and maintains high EMI shielding stability after enduring various harsh conditions. Meanwhile, the AP/MBLM nanocomposite also demonstrates promising heat dissipation behavior. This work expands the concept of creating thin films with high electrical and thermal conductivity.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.