{"title":"A novel method for precise determination of maximum particle loading fraction in highly concentrated suspensions","authors":"Yongsok Seo","doi":"10.1016/j.cemconres.2024.107658","DOIUrl":null,"url":null,"abstract":"<div><h3>Hypothesis</h3><p>Accurately predicting the maximum particle loading fraction (ϕ<sub>max</sub>) of a suspension remains a significant challenge in both theoretical modeling and industrial applications.</p></div><div><h3>Experiments</h3><p>We present a novel method that surpasses existing approaches by precisely determining ϕ<sub>max</sub> through predicting the general suspension viscosity at a constant shear rate as a function of particle volume fraction. Our approach leverages boundary and initial conditions to pinpoint ϕ<sub>max</sub> with precision.</p></div><div><h3>Findings</h3><p>The proposed model flawlessly captures viscosity behavior across the entire range of volume fractions without pre-assumptions or limitations, showcasing its remarkable versatility. We validate the efficacy of our method by comparing its predictions with established theoretical models and diverse experimental data for various suspensions, including nanofluids and yield stress fluids, as reported in the literature. This extends to the evaluation of crucial parameters related to ϕ<sub>max</sub> within existing suspension viscosity models. Beyond its immediate applications, this approach opens avenues for exploring relationships between ϕ<sub>max</sub> and other suspension properties, potentially leading to broader advancements in understanding or manipulating suspension rheological behavior in material science.</p></div>","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"186 ","pages":"Article 107658"},"PeriodicalIF":10.9000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008884624002394","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hypothesis
Accurately predicting the maximum particle loading fraction (ϕmax) of a suspension remains a significant challenge in both theoretical modeling and industrial applications.
Experiments
We present a novel method that surpasses existing approaches by precisely determining ϕmax through predicting the general suspension viscosity at a constant shear rate as a function of particle volume fraction. Our approach leverages boundary and initial conditions to pinpoint ϕmax with precision.
Findings
The proposed model flawlessly captures viscosity behavior across the entire range of volume fractions without pre-assumptions or limitations, showcasing its remarkable versatility. We validate the efficacy of our method by comparing its predictions with established theoretical models and diverse experimental data for various suspensions, including nanofluids and yield stress fluids, as reported in the literature. This extends to the evaluation of crucial parameters related to ϕmax within existing suspension viscosity models. Beyond its immediate applications, this approach opens avenues for exploring relationships between ϕmax and other suspension properties, potentially leading to broader advancements in understanding or manipulating suspension rheological behavior in material science.
期刊介绍:
Cement and Concrete Research is dedicated to publishing top-notch research on the materials science and engineering of cement, cement composites, mortars, concrete, and related materials incorporating cement or other mineral binders. The journal prioritizes reporting significant findings in research on the properties and performance of cementitious materials. It also covers novel experimental techniques, the latest analytical and modeling methods, examination and diagnosis of actual cement and concrete structures, and the exploration of potential improvements in materials.