∂̄-dressing approach and N-soliton solutions of the general reverse-space nonlocal nonlinear Schrödinger equation

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Feng Zhang , Xiangpeng Xin , Pengfei Han , Yi Zhang
{"title":"∂̄-dressing approach and N-soliton solutions of the general reverse-space nonlocal nonlinear Schrödinger equation","authors":"Feng Zhang ,&nbsp;Xiangpeng Xin ,&nbsp;Pengfei Han ,&nbsp;Yi Zhang","doi":"10.1016/j.aml.2024.109293","DOIUrl":null,"url":null,"abstract":"<div><p>Using the <span><math><mover><mrow><mi>∂</mi></mrow><mrow><mo>̄</mo></mrow></mover></math></span>-dressing method, we study the general reverse-space nonlocal nonlinear Schrödinger (nNLS) equation. Beginning with a 3 × 3 matrix <span><math><mover><mrow><mi>∂</mi></mrow><mrow><mo>̄</mo></mrow></mover></math></span>-problem, the associated spatial and time spectral problems are obtained through two linear constraint equations. Furthermore, the gauge equivalence between the Heisenberg chain equation and the general reverse-space nNLS equation is established. By employing a recursive operator, a hierarchy for the general reverse-space nNLS equation is proposed. Moreover, by selecting a suitable spectral transformation matrix, the <span><math><mi>N</mi></math></span>-soliton solutions of the general reverse-space nNLS equation are calculated, yielding the explicit one-soliton and two-soliton solutions.</p></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"160 ","pages":"Article 109293"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965924003136","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Using the ̄-dressing method, we study the general reverse-space nonlocal nonlinear Schrödinger (nNLS) equation. Beginning with a 3 × 3 matrix ̄-problem, the associated spatial and time spectral problems are obtained through two linear constraint equations. Furthermore, the gauge equivalence between the Heisenberg chain equation and the general reverse-space nNLS equation is established. By employing a recursive operator, a hierarchy for the general reverse-space nNLS equation is proposed. Moreover, by selecting a suitable spectral transformation matrix, the N-soliton solutions of the general reverse-space nNLS equation are calculated, yielding the explicit one-soliton and two-soliton solutions.

一般反向空间非局部非线性薛定谔方程的[式略]处理方法和[式略]索利子解
我们使用-dressing 方法研究了一般反空间非局部非线性薛定谔方程(nNLS)。从 3 × 3 矩阵问题开始,通过两个线性约束方程得到了相关的空间和时间谱问题。此外,还建立了海森堡链方程和一般反空间 nNLS 方程之间的规等价关系。通过使用递归算子,提出了一般反空间 nNLS 方程的层次结构。此外,通过选择合适的谱变换矩阵,计算了一般反空间 nNLS 方程的-孑子解,得到了明确的一孑子解和二孑子解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信