Sofie B. Rasmussen , Thijs Bosker , S.Henrik Barmentlo , Olof Berglund , Martina G. Vijver
{"title":"Non-conventional endpoints show higher sulfoxaflor toxicity to Chironomus riparius than conventional endpoints in a multistress environment","authors":"Sofie B. Rasmussen , Thijs Bosker , S.Henrik Barmentlo , Olof Berglund , Martina G. Vijver","doi":"10.1016/j.aquatox.2024.107074","DOIUrl":null,"url":null,"abstract":"<div><p>Evidence grows that standard toxicity testing might underestimate the environmental risk of neurotoxic insecticides. Behavioural endpoints such as locomotion and mobility have been suggested as sensitive and ecologically relevant additions to the standard tested endpoints. Possible interactive effects of chemicals and additional stressors are typically overlooked in standardised testing. Therefore, we aimed to investigate how concurrent exposure to environmental stressors (increased temperature and predation cues) and a nicotinic acetylcholine receptor (nAChR)-modulating insecticide (‘sulfoxaflor’) impact <em>Chironomus riparius</em> across a range of conventional and non-conventional endpoints. We used a multifactorial experimental design encompassing three stressors, sulfoxaflor (2.0–110 µg/L), predation risk (presence/absence of predatory cues), and elevated temperature (20 °C and 23 °C), yielding a total of 24 distinct treatment conditions. Additional stressors did not change the sensitivity of <em>C. riparius</em> to sulfoxaflor. To assess potential additive effects, we applied an Independent Action (IA) model to predict the impact on eight endpoints, including conventional endpoints (growth, survival, total emergence, and emergence time) and less conventional endpoints (the size of the adults, swimming abilities and exploration behaviour). For the conventional endpoints, observed effects were either lower than expected or well-predicted by the IA model. In contrast, we found greater than predicted effects of predation cues and temperature in combination with sulfoxaflor on adult size, larval exploration, and swimming behaviour. However, in contrast to the non-conventional endpoints, no conventional endpoints detected interactive effects of the neurotoxic insecticide and the environmental stressors. Acknowledging these interactions, increasing ecological context of ecotoxicological test systems may, therefore, advance environmental risk analysis and interpretation as the safe environmental concentrations of neurotoxic insecticides depend on the context of both the test organism and its environment.</p></div>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"275 ","pages":"Article 107074"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0166445X24002443/pdfft?md5=e6ece69472f78e5a89f3aec49fedb0bf&pid=1-s2.0-S0166445X24002443-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Toxicology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166445X24002443","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Evidence grows that standard toxicity testing might underestimate the environmental risk of neurotoxic insecticides. Behavioural endpoints such as locomotion and mobility have been suggested as sensitive and ecologically relevant additions to the standard tested endpoints. Possible interactive effects of chemicals and additional stressors are typically overlooked in standardised testing. Therefore, we aimed to investigate how concurrent exposure to environmental stressors (increased temperature and predation cues) and a nicotinic acetylcholine receptor (nAChR)-modulating insecticide (‘sulfoxaflor’) impact Chironomus riparius across a range of conventional and non-conventional endpoints. We used a multifactorial experimental design encompassing three stressors, sulfoxaflor (2.0–110 µg/L), predation risk (presence/absence of predatory cues), and elevated temperature (20 °C and 23 °C), yielding a total of 24 distinct treatment conditions. Additional stressors did not change the sensitivity of C. riparius to sulfoxaflor. To assess potential additive effects, we applied an Independent Action (IA) model to predict the impact on eight endpoints, including conventional endpoints (growth, survival, total emergence, and emergence time) and less conventional endpoints (the size of the adults, swimming abilities and exploration behaviour). For the conventional endpoints, observed effects were either lower than expected or well-predicted by the IA model. In contrast, we found greater than predicted effects of predation cues and temperature in combination with sulfoxaflor on adult size, larval exploration, and swimming behaviour. However, in contrast to the non-conventional endpoints, no conventional endpoints detected interactive effects of the neurotoxic insecticide and the environmental stressors. Acknowledging these interactions, increasing ecological context of ecotoxicological test systems may, therefore, advance environmental risk analysis and interpretation as the safe environmental concentrations of neurotoxic insecticides depend on the context of both the test organism and its environment.
期刊介绍:
Aquatic Toxicology publishes significant contributions that increase the understanding of the impact of harmful substances (including natural and synthetic chemicals) on aquatic organisms and ecosystems.
Aquatic Toxicology considers both laboratory and field studies with a focus on marine/ freshwater environments. We strive to attract high quality original scientific papers, critical reviews and expert opinion papers in the following areas: Effects of harmful substances on molecular, cellular, sub-organismal, organismal, population, community, and ecosystem level; Toxic Mechanisms; Genetic disturbances, transgenerational effects, behavioral and adaptive responses; Impacts of harmful substances on structure, function of and services provided by aquatic ecosystems; Mixture toxicity assessment; Statistical approaches to predict exposure to and hazards of contaminants
The journal also considers manuscripts in other areas, such as the development of innovative concepts, approaches, and methodologies, which promote the wider application of toxicological datasets to the protection of aquatic environments and inform ecological risk assessments and decision making by relevant authorities.