A Novel Digital Predistortion Coefficients Prediction Technique for Dynamic PA Nonlinearities Using Artificial Neural Networks

0 ENGINEERING, ELECTRICAL & ELECTRONIC
Yufeng Zhang;Qingyue Chen;Kun Gao;Xin Liu;Wenhua Chen;Haigang Feng;Zhenghe Feng;Fadhel M. Ghannouchi
{"title":"A Novel Digital Predistortion Coefficients Prediction Technique for Dynamic PA Nonlinearities Using Artificial Neural Networks","authors":"Yufeng Zhang;Qingyue Chen;Kun Gao;Xin Liu;Wenhua Chen;Haigang Feng;Zhenghe Feng;Fadhel M. Ghannouchi","doi":"10.1109/LMWT.2024.3433484","DOIUrl":null,"url":null,"abstract":"This article presents a novel artificial neural network (ANN)-based digital predistortion (DPD) coefficients prediction (ANN-DPDCP) technique for dynamic nonlinearities induced by varying input power levels of power amplifiers (PAs). Conventional DPD techniques face challenges in mitigating dynamic nonlinearities efficiently. By modeling and predicting variations of conventional Volterra-based DPD coefficients using ANNs, the ANN-DPDCP technique rapidly provides appropriate DPD coefficients based on the target input power level. Benefiting from its concise training dataset and fitting capability, the ANN-DPDCP technique requires limited storage resources and derives DPD coefficients at arbitrary input power levels with negligible delay and comparable linearization performance. Experiments on a Ka-band PA driven by 100- and 400-MHz signals with a 12-dBm input power range illustrate storage resource reductions of 99.54% for 400 MHz and 99.81% for 100 MHz.","PeriodicalId":73297,"journal":{"name":"IEEE microwave and wireless technology letters","volume":"34 9","pages":"1115-1118"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE microwave and wireless technology letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10633732/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents a novel artificial neural network (ANN)-based digital predistortion (DPD) coefficients prediction (ANN-DPDCP) technique for dynamic nonlinearities induced by varying input power levels of power amplifiers (PAs). Conventional DPD techniques face challenges in mitigating dynamic nonlinearities efficiently. By modeling and predicting variations of conventional Volterra-based DPD coefficients using ANNs, the ANN-DPDCP technique rapidly provides appropriate DPD coefficients based on the target input power level. Benefiting from its concise training dataset and fitting capability, the ANN-DPDCP technique requires limited storage resources and derives DPD coefficients at arbitrary input power levels with negligible delay and comparable linearization performance. Experiments on a Ka-band PA driven by 100- and 400-MHz signals with a 12-dBm input power range illustrate storage resource reductions of 99.54% for 400 MHz and 99.81% for 100 MHz.
利用人工神经网络预测动态功率放大器非线性的新型数字预失真系数技术
本文介绍了一种基于人工神经网络(ANN)的新型数字预失真(DPD)系数预测(ANN-DPDCP)技术,用于处理功率放大器(PA)输入功率水平变化引起的动态非线性问题。传统的 DPD 技术在有效缓解动态非线性方面面临挑战。ANN-DPDCP 技术通过使用 ANN 对基于 Volterra 的传统 DPD 系数的变化进行建模和预测,可根据目标输入功率电平快速提供适当的 DPD 系数。得益于其简洁的训练数据集和拟合能力,ANN-DPDCP 技术只需有限的存储资源,就能在任意输入功率水平下推导出 DPD 系数,且延迟可忽略不计,线性化性能相当。在一个由 100 和 400 MHz 信号驱动、输入功率范围为 12 dBm 的 Ka 波段功率放大器上进行的实验表明,400 MHz 和 100 MHz 的存储资源分别减少了 99.54% 和 99.81%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信