GoBot Go! Using a Custom Assistive Robot to Promote Physical Activity in Children

IF 3.7 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Rafael Morales Mayoral;Ameer Helmi;Samuel W. Logan;Naomi T. Fitter
{"title":"GoBot Go! Using a Custom Assistive Robot to Promote Physical Activity in Children","authors":"Rafael Morales Mayoral;Ameer Helmi;Samuel W. Logan;Naomi T. Fitter","doi":"10.1109/JTEHM.2024.3446511","DOIUrl":null,"url":null,"abstract":"Children worldwide are becoming increasingly inactive, leading to significant wellness challenges. Initial findings from our research team indicate that robots could potentially provide a more effective approach (compared to other age-appropriate toys) for encouraging physical activity in children. However, the basis of this past work relied on either interactions with groups of children (making it challenging to isolate specific factors that influenced activity levels) or a preliminary version of results of the present study (which centered on just a single more exploratory method for assessing child movement). This paper delves into more controlled interactions involving a single robot and a child participant, while also considering observations over an extended period to mitigate the influence of novelty on the study outcomes. We discuss the outcomes of a two-month-long deployment, during which \n<inline-formula> <tex-math>$N=8$ </tex-math></inline-formula>\n participants engaged with our custom robot, GoBot, in weekly sessions. During each session, the children experienced three different conditions: a teleoperated robot mode, a semi-autonomous robot mode, and a control condition in which the robot was present but inactive. Compared to our past related work, the results expanded our findings by confirming with greater clout (based on multiple data streams, including one more robust measure compared to the past related work) that children tended to be more physically active when the robot was active, and interestingly, there were no significant differences between the teleoperated and semi-autonomous modes in terms of our study measures. These insights can inform future applications of assistive robots in child motor interventions, including the guiding of appropriate levels of autonomy for these systems. This study demonstrates that incorporating robotic systems into play environments can boost physical activity in young children, indicating potential implementation in settings crafted to enhance children’s physical movement.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10640114","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10640114/","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Children worldwide are becoming increasingly inactive, leading to significant wellness challenges. Initial findings from our research team indicate that robots could potentially provide a more effective approach (compared to other age-appropriate toys) for encouraging physical activity in children. However, the basis of this past work relied on either interactions with groups of children (making it challenging to isolate specific factors that influenced activity levels) or a preliminary version of results of the present study (which centered on just a single more exploratory method for assessing child movement). This paper delves into more controlled interactions involving a single robot and a child participant, while also considering observations over an extended period to mitigate the influence of novelty on the study outcomes. We discuss the outcomes of a two-month-long deployment, during which $N=8$ participants engaged with our custom robot, GoBot, in weekly sessions. During each session, the children experienced three different conditions: a teleoperated robot mode, a semi-autonomous robot mode, and a control condition in which the robot was present but inactive. Compared to our past related work, the results expanded our findings by confirming with greater clout (based on multiple data streams, including one more robust measure compared to the past related work) that children tended to be more physically active when the robot was active, and interestingly, there were no significant differences between the teleoperated and semi-autonomous modes in terms of our study measures. These insights can inform future applications of assistive robots in child motor interventions, including the guiding of appropriate levels of autonomy for these systems. This study demonstrates that incorporating robotic systems into play environments can boost physical activity in young children, indicating potential implementation in settings crafted to enhance children’s physical movement.
GoBot Go!使用定制辅助机器人促进儿童体育锻炼
全世界的儿童越来越不爱运动,这给他们的健康带来了巨大挑战。我们研究团队的初步研究结果表明,与其他适龄玩具相比,机器人有可能为鼓励儿童进行体育锻炼提供更有效的方法。然而,以往工作的基础要么依赖于与儿童群体的互动(这使得分离出影响活动水平的特定因素具有挑战性),要么依赖于本研究结果的初步版本(其核心是评估儿童运动的单一更具探索性的方法)。本文深入探讨了涉及单个机器人和儿童参与者的更受控制的互动,同时还考虑了长时间的观察,以减轻新奇感对研究结果的影响。我们讨论了为期两个月的部署成果,在此期间,N=8 名参与者与我们的定制机器人 GoBot 每周进行一次互动。在每次活动中,孩子们都会经历三种不同的情况:远程操作机器人模式、半自主机器人模式以及机器人在场但不活动的控制条件。与我们过去的相关工作相比,研究结果扩大了我们的发现范围,以更大的影响力(基于多个数据流,包括一个与过去的相关工作相比更可靠的测量指标)证实了当机器人处于活动状态时,儿童往往更积极地参加体育活动,有趣的是,就我们的研究指标而言,远程操作模式和半自主模式之间没有显著差异。这些见解可以为未来在儿童运动干预中应用辅助机器人提供参考,包括指导这些系统达到适当的自主水平。这项研究表明,将机器人系统融入游戏环境中可以促进幼儿的身体活动,这表明在旨在增强儿童身体运动的环境中的应用具有潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.40
自引率
2.90%
发文量
65
审稿时长
27 weeks
期刊介绍: The IEEE Journal of Translational Engineering in Health and Medicine is an open access product that bridges the engineering and clinical worlds, focusing on detailed descriptions of advanced technical solutions to a clinical need along with clinical results and healthcare relevance. The journal provides a platform for state-of-the-art technology directions in the interdisciplinary field of biomedical engineering, embracing engineering, life sciences and medicine. A unique aspect of the journal is its ability to foster a collaboration between physicians and engineers for presenting broad and compelling real world technological and engineering solutions that can be implemented in the interest of improving quality of patient care and treatment outcomes, thereby reducing costs and improving efficiency. The journal provides an active forum for clinical research and relevant state-of the-art technology for members of all the IEEE societies that have an interest in biomedical engineering as well as reaching out directly to physicians and the medical community through the American Medical Association (AMA) and other clinical societies. The scope of the journal includes, but is not limited, to topics on: Medical devices, healthcare delivery systems, global healthcare initiatives, and ICT based services; Technological relevance to healthcare cost reduction; Technology affecting healthcare management, decision-making, and policy; Advanced technical work that is applied to solving specific clinical needs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信