Ran Cheng;Mingchen Sun;Fei Wang;Dengyun Mu;Yu Liu;Qingguo Xie;Bensheng Qiu;Xun Chen;Peng Xiao
{"title":"Dual-Ended Readout PET Detector Based on Multivoltage Threshold Sampling Combined With Convolutional Neural Network for Energy Calculation","authors":"Ran Cheng;Mingchen Sun;Fei Wang;Dengyun Mu;Yu Liu;Qingguo Xie;Bensheng Qiu;Xun Chen;Peng Xiao","doi":"10.1109/TRPMS.2024.3393235","DOIUrl":null,"url":null,"abstract":"To minimize parallax errors and achieve high spatial resolution positron emission tomography (PET) systems, developing depth-of-Interaction (DOI) encoding detectors has become a significant research topic. In this article, we investigated a dual-ended readout PET detector based on the multivoltage threshold (MVT) sampling method combined with a convolutional neural network (CNN) to calculate the pulse’s energy (MVT-CNN method). The MVT sampling method was used to acquire time-threshold samples and digitize scintillation pulses. The CNN model was employed to establish an accurate mapping between MVT sampling points and energy information. The dual-ended readout detector’s energy, DOI, and timing performance were evaluated with two irradiation configurations. The results demonstrated that the performance of the MVT-CNN method was close to that of the integration method based on oscilloscope sampling. Using the MVT-CNN method, the average energy resolution of the tested crystals over all depths was \n<inline-formula> <tex-math>$14.5 \\, \\pm \\, 1.2$ </tex-math></inline-formula>\n%, and the average DOI resolution was \n<inline-formula> <tex-math>$2.81 \\, \\pm \\, 0$ </tex-math></inline-formula>\n.70 mm. In the side irradiation configuration, the average coincidence timing resolution of the tested crystals at 2 mm depth was 435 ps. The performance of the dual-ended readout DOI-PET detector basedon the MVT-CNN method suggested that it could develop small animal and organ-dedicated PET systems with high sensitivity and uniform spatial resolutionxs.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radiation and Plasma Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10508232/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
To minimize parallax errors and achieve high spatial resolution positron emission tomography (PET) systems, developing depth-of-Interaction (DOI) encoding detectors has become a significant research topic. In this article, we investigated a dual-ended readout PET detector based on the multivoltage threshold (MVT) sampling method combined with a convolutional neural network (CNN) to calculate the pulse’s energy (MVT-CNN method). The MVT sampling method was used to acquire time-threshold samples and digitize scintillation pulses. The CNN model was employed to establish an accurate mapping between MVT sampling points and energy information. The dual-ended readout detector’s energy, DOI, and timing performance were evaluated with two irradiation configurations. The results demonstrated that the performance of the MVT-CNN method was close to that of the integration method based on oscilloscope sampling. Using the MVT-CNN method, the average energy resolution of the tested crystals over all depths was
$14.5 \, \pm \, 1.2$
%, and the average DOI resolution was
$2.81 \, \pm \, 0$
.70 mm. In the side irradiation configuration, the average coincidence timing resolution of the tested crystals at 2 mm depth was 435 ps. The performance of the dual-ended readout DOI-PET detector basedon the MVT-CNN method suggested that it could develop small animal and organ-dedicated PET systems with high sensitivity and uniform spatial resolutionxs.