Extracting Superficial Scattering by Q-Sensing Technique.

Alon Tzroya, Hamootal Duadi, Dror Fixler
{"title":"Extracting Superficial Scattering by Q-Sensing Technique.","authors":"Alon Tzroya, Hamootal Duadi, Dror Fixler","doi":"10.1002/jbio.202400262","DOIUrl":null,"url":null,"abstract":"<p><p>Optical properties determine how light interacts with biological tissues. The current methods for measuring these optical properties are influenced by both deep and superficial skin layers. Polarization-based methods have been proposed in order to determine the influence of deep layer scattering. Polarized light allows for the separation of ballistic photons from diffuse ones, enhancing image contrast and resolution while providing additional tissue information. The Q-sensing technique captures co-polarized <math> <semantics> <mrow> <mfenced><msub><mi>I</mi> <mo>∥</mo></msub> </mfenced> </mrow> <annotation>$$ \\left({I}_{\\parallel}\\right) $$</annotation></semantics> </math> and cross-polarized <math> <semantics> <mrow> <mfenced><msub><mi>I</mi> <mo>⊥</mo></msub> </mfenced> </mrow> <annotation>$$ \\left({I}_{\\perp}\\right) $$</annotation></semantics> </math> signals, making it possible to isolate the superficial scattering. However, the random structure of tissues leads to rapid depolarization of the polarized light. Detecting where the light becomes depolarized aids in sensing abnormalities within the tissues. Hence, this research focuses on identifying where depolarization occurs within the tissue. Tissue-mimicking phantoms, simulating the optical properties of biological tissues, are created to measure depolarization at various thicknesses. Experimental findings are validated with a Monte Carlo simulation, modeling polarized light behavior through the polydisperse tissue (as the tissue scatterers are heterogeneous in size). Additionally, the research demonstrates how polarized light can extract the optical properties of the medium.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbio.202400262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Optical properties determine how light interacts with biological tissues. The current methods for measuring these optical properties are influenced by both deep and superficial skin layers. Polarization-based methods have been proposed in order to determine the influence of deep layer scattering. Polarized light allows for the separation of ballistic photons from diffuse ones, enhancing image contrast and resolution while providing additional tissue information. The Q-sensing technique captures co-polarized I $$ \left({I}_{\parallel}\right) $$ and cross-polarized I $$ \left({I}_{\perp}\right) $$ signals, making it possible to isolate the superficial scattering. However, the random structure of tissues leads to rapid depolarization of the polarized light. Detecting where the light becomes depolarized aids in sensing abnormalities within the tissues. Hence, this research focuses on identifying where depolarization occurs within the tissue. Tissue-mimicking phantoms, simulating the optical properties of biological tissues, are created to measure depolarization at various thicknesses. Experimental findings are validated with a Monte Carlo simulation, modeling polarized light behavior through the polydisperse tissue (as the tissue scatterers are heterogeneous in size). Additionally, the research demonstrates how polarized light can extract the optical properties of the medium.

利用 Q 感应技术提取表层散射。
光学特性决定了光与生物组织的相互作用。目前测量这些光学特性的方法受到皮肤深层和表层的影响。为了确定深层散射的影响,人们提出了基于偏振的方法。偏振光可将弹道光子从漫射光子中分离出来,提高图像对比度和分辨率,同时提供更多组织信息。Q-sensing 技术可捕获共偏振 I ∥ $ \left({I}_{parallel}\right) $$ 和交叉偏振 I ⊥ $ \left({I}_{perp}\right) $$ 信号,从而有可能分离表层散射。然而,组织的随机结构会导致偏振光迅速去极化。检测偏振光去极化的位置有助于感知组织内的异常。因此,这项研究的重点是确定组织内发生去极化的位置。研究人员制作了模拟生物组织光学特性的组织模型,以测量不同厚度组织的去极化情况。实验结果通过蒙特卡洛模拟进行了验证,模拟了偏振光穿过多分散组织的行为(因为组织散射体的大小是不均匀的)。此外,研究还展示了偏振光如何提取介质的光学特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信