Backtracking: Improved methods for identifying the source of a deliberate release of Bacillus anthracis from the temporal and spatial distribution of cases.

IF 3.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Joseph Shingleton, David Mustard, Steven Dyke, Hannah Williams, Emma Bennett, Thomas Finnie
{"title":"Backtracking: Improved methods for identifying the source of a deliberate release of Bacillus anthracis from the temporal and spatial distribution of cases.","authors":"Joseph Shingleton, David Mustard, Steven Dyke, Hannah Williams, Emma Bennett, Thomas Finnie","doi":"10.1371/journal.pcbi.1010817","DOIUrl":null,"url":null,"abstract":"<p><p>Reverse epidemiology is a mathematical modelling tool used to ascertain information about the source of a pathogen, given the spatial and temporal distribution of cases, hospitalisations and deaths. In the context of a deliberately released pathogen, such as Bacillus anthracis (the disease-causing organism of anthrax), this can allow responders to quickly identify the location and timing of the release, as well as other factors such as the strength of the release, and the realized wind speed and direction at release. These estimates can then be used to parameterise a predictive mechanistic model, allowing for estimation of the potential scale of the release, and to optimise the distribution of prophylaxis. In this paper we present two novel approaches to reverse epidemiology, and demonstrate their utility in responding to a simulated deliberate release of B. anthracis in ten locations in the UK and compare these to the standard grid-search approach. The two methods-a modified MCMC and a Recurrent Convolutional Neural Network-are able to identify the source location and timing of the release with significantly better accuracy compared to the grid-search approach. Further, the neural network method is able to do inference on new data significantly quicker than either the grid-search or novel MCMC methods, allowing for rapid deployment in time-sensitive outbreaks.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1010817","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Reverse epidemiology is a mathematical modelling tool used to ascertain information about the source of a pathogen, given the spatial and temporal distribution of cases, hospitalisations and deaths. In the context of a deliberately released pathogen, such as Bacillus anthracis (the disease-causing organism of anthrax), this can allow responders to quickly identify the location and timing of the release, as well as other factors such as the strength of the release, and the realized wind speed and direction at release. These estimates can then be used to parameterise a predictive mechanistic model, allowing for estimation of the potential scale of the release, and to optimise the distribution of prophylaxis. In this paper we present two novel approaches to reverse epidemiology, and demonstrate their utility in responding to a simulated deliberate release of B. anthracis in ten locations in the UK and compare these to the standard grid-search approach. The two methods-a modified MCMC and a Recurrent Convolutional Neural Network-are able to identify the source location and timing of the release with significantly better accuracy compared to the grid-search approach. Further, the neural network method is able to do inference on new data significantly quicker than either the grid-search or novel MCMC methods, allowing for rapid deployment in time-sensitive outbreaks.

回溯:从病例的时间和空间分布中确定故意释放炭疽杆菌来源的改进方法。
反向流行病学是一种数学建模工具,用于根据病例、住院和死亡的空间和时间分布,确定病原体的来源信息。对于故意释放的病原体,如炭疽杆菌(炭疽的致病微生物),这可以让应对人员快速确定释放的地点和时间,以及其他因素,如释放的强度、释放时的风速和风向。然后,这些估计值可用于对预测性机理模型进行参数化,从而对释放的潜在规模进行估计,并优化预防措施的分布。在本文中,我们介绍了反向流行病学的两种新方法,并展示了这两种方法在应对英国十个地点的炭疽杆菌模拟蓄意释放中的实用性,并将其与标准网格搜索方法进行了比较。与网格搜索法相比,这两种方法--改进的 MCMC 和递归卷积神经网络--能够更准确地确定释放源的位置和时间。此外,神经网络方法对新数据进行推理的速度明显快于网格搜索方法或新型 MCMC 方法,从而可以在时间敏感的疫情爆发中快速部署。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS Computational Biology
PLoS Computational Biology BIOCHEMICAL RESEARCH METHODS-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
7.10
自引率
4.70%
发文量
820
审稿时长
2.5 months
期刊介绍: PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery. Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines. Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights. Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology. Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信