Mechanistic exploration of COVlD-19 antiviral drug ritonavir on anaerobic digestion through experimental validation coupled with metagenomics analysis.
{"title":"Mechanistic exploration of COVlD-19 antiviral drug ritonavir on anaerobic digestion through experimental validation coupled with metagenomics analysis.","authors":"Ruming Wang, Zhuoqin Wang, Haiping Yuan, Chunxing Li, Nanwen Zhu","doi":"10.1016/j.jhazmat.2024.135603","DOIUrl":null,"url":null,"abstract":"<p><p>Aggregation of antiviral drugs (ATVs) in waste activated sludge (WAS) poses considerable environmental risk, so it is crucial to understand the behavior of these agents during WAS treatment. This study investigated the effects of ritonavir (RIT), an ATV used to treat human immunodeficiency virus infection and coronavirus disease 2019, on anaerobic digestion (AD) of WAS to reveal the mechanisms by which it interferes with anaerobic flora. The dosage influence results showed that methane production in AD of WAS decreased by 46.56 % when RIT concentration was increased to 1000 μg/kg total suspended solids (TSS). The AD staging test revealed that RIT mainly stimulated microbial synthesis of the extracellular polymeric substance (EPS), limiting organic matter solubilization. At 500 μg/kg TSS, RIT decreased CHO and CHON levels in dissolved organic matter by 23.12 % and 56.68 %, respectively, significantly reducing substrate availability to microorganisms. Metagenomic analysis of microbial functional gene sets revealed that RIT had greater inhibitory effects on protein and amino acid metabolism than on carbohydrate metabolism. Under RIT stress, methanogens switched from hydrogenotrophic and acetotrophic methanogenesis to methylotrophic and acetotrophic methanogenesis.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of hazardous materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.135603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/22 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Aggregation of antiviral drugs (ATVs) in waste activated sludge (WAS) poses considerable environmental risk, so it is crucial to understand the behavior of these agents during WAS treatment. This study investigated the effects of ritonavir (RIT), an ATV used to treat human immunodeficiency virus infection and coronavirus disease 2019, on anaerobic digestion (AD) of WAS to reveal the mechanisms by which it interferes with anaerobic flora. The dosage influence results showed that methane production in AD of WAS decreased by 46.56 % when RIT concentration was increased to 1000 μg/kg total suspended solids (TSS). The AD staging test revealed that RIT mainly stimulated microbial synthesis of the extracellular polymeric substance (EPS), limiting organic matter solubilization. At 500 μg/kg TSS, RIT decreased CHO and CHON levels in dissolved organic matter by 23.12 % and 56.68 %, respectively, significantly reducing substrate availability to microorganisms. Metagenomic analysis of microbial functional gene sets revealed that RIT had greater inhibitory effects on protein and amino acid metabolism than on carbohydrate metabolism. Under RIT stress, methanogens switched from hydrogenotrophic and acetotrophic methanogenesis to methylotrophic and acetotrophic methanogenesis.